Skip to main content
Log in

Physics and Chemistry of Creating New Titanates with Perovskite Structure

  • To the 100Th Anniversary of the Karpov Institute of Physical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The phase formation, structural features, and dielectric, ferroelectric, and piezoelectric properties of ceramics with compositions from the region of the morphotropic phase boundary in the (Na0.5Bi0.5)TiO3–BaTiO3–Bi(Mg0.5Ti0.5)O3 system modified by different low-melting additives (Bi2O3, V2O5, KCl, NaCl–LiF, LiF, CuO, and MnO2) are studied. First-order phase transitions are detected near 700–800 and 400 K that display relaxor behavior and are indicative of the presence of polar regions in a nonpolar matrix. Prospects for improving the piezoelectric properties of the modified ceramic samples are confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cross, Nature 432, 24 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, et al., Nature 432, 84 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. M. D. Maeder, D. Damjanovic, and N. Setter, J. Electroceram 13, 385 (2004).

    Article  CAS  Google Scholar 

  4. H. A. Sodano, A. Henry, D. J. Inman, and G. Park, J. Intel. Mater. Syst. Struct. 16, 799 (2005).

    Article  Google Scholar 

  5. S. J. Zhang, R. Xia, and R. T. Shrout, J. Electroceram. 19, 251 (2007).

    Article  CAS  Google Scholar 

  6. T. Takenaka, H. Nagata, Y. Hiruma, et al., J. Electroceram. 19, 259 (2007).

    Article  CAS  Google Scholar 

  7. J. Rodel, W. Jo, K. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  CAS  Google Scholar 

  8. D. Damjanovich, N. Klein, J. Li, and V. Porokhonskyy, Funct. Mater. Lett. 3, 5 (2010).

    Article  Google Scholar 

  9. V. Gupta, M. Sharma, and N. Thakur, J. Intel. Mat. Sys. Str. 21, 1227 (2010).

    Article  Google Scholar 

  10. D. Q. Xiao, J. Adv. Dielectr. 1, 33 (2011).

    Article  CAS  Google Scholar 

  11. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).

    Article  CAS  Google Scholar 

  12. J. L. Hyeong and Z. H. Shujun, in Lead-Free Piezoelectrics, Ed. by S. Priya and S. Nahm (Springer, New York, 2012), p. 291.

  13. I. Coondoo, N. Panwar, and A. Kholkin, J. Adv. Dielectr. 3, 1330002 (2013).

    Article  CAS  Google Scholar 

  14. P. K. Panda and B. Sahoo, Ferroelectrics 474, 128 (2015).

    Article  CAS  Google Scholar 

  15. E. Taghaddos, M. Hejazi, and A. Safari, J. Adv. Dielectr. 5, 1530002 (2015).

    Article  CAS  Google Scholar 

  16. K. Reichmann, A. Feteira, and M. Li, Materials 8, 8467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Rödel, K. G. Webber, R. Dittmer, et al., J. Eur. Ceram. Soc. 35, 1659 (2015).

    Article  CAS  Google Scholar 

  18. C. H. Hong, H. P. Kim, B. Y. Choi, et al., J. Materiomics 2, 1 (2016).

    Article  Google Scholar 

  19. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1960).

    Google Scholar 

  20. S. B. Vakhrushev, V. A. Isupov, B. E. Kvyatkovsky, et al., Ferroelectrics 63, 153 (1985).

    Article  CAS  Google Scholar 

  21. Yu. N. Venevtsev, E. D. Politova, and S. A. Ivanov, Ferrielectrics and Antiferrielectrics in the Barium Titanate Family (Khimiya, Moscow, 1985) [in Russian].

    Google Scholar 

  22. G. O. Jones and P. A. Thomas, Acta Crystallogr., Sect. B 58, 168 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, Jpn. J. Appl. Phys., Pt. 1 42, 7401 (2003).

    Article  CAS  Google Scholar 

  24. D. Q. Xiao, D. M. Lin, J. G. Zhu, and P. Yu, J. Electroceram. 21, 34 (2008).

    Article  CAS  Google Scholar 

  25. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008).

    Article  CAS  Google Scholar 

  26. C. Xu, D. Lin, and K. W. Kwok, Solid State Sci. 10, 934 (2008).

    Article  CAS  Google Scholar 

  27. Y. Hiruma, H. Nagata, and T. Takenaka, J. Appl. Phys. 105, 084112 (2009).

    Article  CAS  Google Scholar 

  28. C. Ma, X. Tan, E. Dul’kin, and M. Roth, J. Appl. Phys. 108, 104105 (2010).

    Article  CAS  Google Scholar 

  29. K. Datta, P. A. Thomas, and K. Roleder, Phys. Rev. B 82, 224105 (2010).

    Article  CAS  Google Scholar 

  30. S. Gorfman and P. A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010).

    Article  CAS  Google Scholar 

  31. F. Cordero, F. Craciun, F. Trequattrini, et al., Phys. Rev. B 81, 144124 (2010).

    Article  CAS  Google Scholar 

  32. H. Nagata, T. Shinya, Y. Hiruma, et al., in Developments in Dielectric Materials and Electronic Devices (Wiley, New York, 2012), p. 213.

    Book  Google Scholar 

  33. R. Beanland and P. A. Thomas, Phys. Rev. B 89, 174102 (2014).

    Article  CAS  Google Scholar 

  34. D. D. Khalyavin, A. N. Salak, N. P. Vyshatko, et al., Chem. Mater. 18, 5104 (2006).

    Article  CAS  Google Scholar 

  35. A. G. Segalla, S. S. Nersesov, G. M. Kaleva, and E. D. Politova, Inorg. Mater. 50, 606 (2014).

    Article  CAS  Google Scholar 

  36. E. D. Politova, V. S. Akinfiev, G. M. Kaleva, et al., Ferroelectrics 464, 399 (2014).

    Article  CAS  Google Scholar 

  37. G. M. Kaleva, E. D. Politova, A. V. Mosunov, N. V. Sadovskaya, A. G. Segalla, and J. Zeng, Inorg. Mater. 48, 953 (2012).

    Article  CAS  Google Scholar 

  38. G. M. Kaleva, A. V. Mosunov, S. Yu. Stefanovich, et al., Ferroelectrics 498, 85 (2016).

    Article  CAS  Google Scholar 

  39. G. M. Kaleva, A. V. Mosunov, N. V. Sadovskaya, et al., J. Adv. Diel. 6, 1650007 (2016).

    Article  CAS  Google Scholar 

  40. N. V. Golubko, G. M. Kaleva, A. V. Mosunov, N. V. Sadovskaya, and E. D. Politova, Inorg. Mater. 52, 925 (2016).

    Article  CAS  Google Scholar 

  41. G. M. Kaleva, A. V. Mosunov, and E. D. Politova, Inorg. Mater. 52, 836 (2016).

    Article  CAS  Google Scholar 

  42. E. D. Politova, E. A. Fortalnova, M. G. Safronenko, et al., Ferroelectrics 513, 7 (2017).

    Article  CAS  Google Scholar 

  43. W. Kleemann, Int. J. Mod. Phys. B 7, 2469 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Politova.

Additional information

Original Russian Text © E.D. Politova, G.M. Kaleva, N.V. Golubko, A.V. Mosunov, N.V. Sadovskaya, D.A. Bel’kova, D.A. Strebkov, S.Yu. Stefanovich, D.A. Kiselev, A.M. Kislyuk, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 6, pp. 947–952.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politova, E.D., Kaleva, G.M., Golubko, N.V. et al. Physics and Chemistry of Creating New Titanates with Perovskite Structure. Russ. J. Phys. Chem. 92, 1132–1137 (2018). https://doi.org/10.1134/S0036024418060146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418060146

Keywords

Navigation