Skip to main content
Log in

Singlet–triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (ΔG(t–s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as–F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as–F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N–M–N angle, and the Δ(LUMO–HOMO) of XC2HN2M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Arduengo, R. L. Harlow, and M. Kline, J. Am. Chem. Soc. 113, 361 (1991).

    Article  CAS  Google Scholar 

  2. P. S. Skell and R. C. Woodworth, J. Am. Chem. Soc. 78, 4496 (1956).

    Article  CAS  Google Scholar 

  3. D. Bourissou, O. Guerret, F. P. Gabbai, and G. Bertrand, Chem. Rev. 100, 39 (2000).

    Article  CAS  Google Scholar 

  4. W. E. Parham, F. C. Loew, and E. E. Schweizer, J. Org. Chem. 24, 1900 (1959).

    Article  CAS  Google Scholar 

  5. W. H. Atwell and D. R. Weyenberg, J. Am. Chem. Soc. 90, 3438 (1968).

    Article  CAS  Google Scholar 

  6. Y. Apeloig, R. Pauncz, M. Karni, R. West, W. Steiner, and D. Chapman, Organometallics 22, 3250 (2003).

    Article  CAS  Google Scholar 

  7. C. L. Collins, R. D. Davy, and H. F. Schaefer, Chem. Phys. Lett. 171, 259 (1990).

    Article  CAS  Google Scholar 

  8. M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, and N. Metzler, J. Am. Chem. Soc. 116, 2691 (1994).

    Article  CAS  Google Scholar 

  9. W. A. Herrmann, M. Denk, J. Behm, W. Scherer, F.-R. Klingan, H. Bock, B. Solouki, and M. Wagner, Angew. Chem. 31, 1485 (1992).

    Article  Google Scholar 

  10. N. Tokitoh, H. Suzuki, R. Okazaki, and K. Ogawa, J. Am. Chem. Soc. 115, 10428 (1993).

    Article  CAS  Google Scholar 

  11. M. Z. Kassaee, S. Arshadi, M. Acedy, and E. Vessally, J. Organomet. Chem. 690, 3427 (2005).

    Article  CAS  Google Scholar 

  12. E. Vessally, Heteroat. Chem. 19, 245 (2008).

    Article  CAS  Google Scholar 

  13. E. Vessally, M. Nikoorazm, and A. Ramazani, Chin. J. Inorg. Chem. 24, 631 (2008).

    CAS  Google Scholar 

  14. E. Vessally, A. Rezaei, N. Chalyavi, and M. Nikoorazm, Russ. J. J. Phys. Chem. 81, 1821 (2007).

    Google Scholar 

  15. E. Vessally, A. Rezaei, N. Chalyavi, and M. Nikoorazm, J. Chin. Chem. Soc. 54, 1583 (2007).

    Article  CAS  Google Scholar 

  16. E. Vessally, Phosphorus Sulfur Silicon Relat. Elem. 184, 1805 (2009).

    Article  CAS  Google Scholar 

  17. E. Vessally, M. Abbasian, A. Ramazani, and A. R. Poor Heravi, Phosphorus Sulfur Silicon Relat. Elem. 185, 705 (2010).

    Article  CAS  Google Scholar 

  18. E. Vessally, M. Nikoorazm, F. Esmaili, and E. Fereyduni, J. Organomet. Chem. 696, 932 (2011).

    Article  CAS  Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Znkrzewski, G. A. Montgomery, R. E. Startmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, et al., Gaussian 98, Revision A.6 (Gaussian Inc., Pittsburgh PA, 1998).

    Google Scholar 

  21. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys. 77, 3654 (1982).

    Article  CAS  Google Scholar 

  22. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).

    Article  CAS  Google Scholar 

  23. Y. Apeloig, R. Pauncz, M. Karni, R. West, W. Steiner, and D. Chapman, Organometallics 22, 3250 (2003).

    Article  CAS  Google Scholar 

  24. C. Gonzalez, A. Restrepo-Cossio, M. Márquez, K. B. Wiberg, and M. D. Rosa, J. Phys. Chem. A 102, 2732 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Dehbandi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vessally, E., Dehbandi, B. & Ahmadi, E. Singlet–triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I). Russ. J. Phys. Chem. 90, 1849–1858 (2016). https://doi.org/10.1134/S0036024416090302

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416090302

Keywords

Navigation