Skip to main content
Log in

The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst

  • Photochemistry and Magnetochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, the characterization and photocatalytic activity of MoO3 nanoparticles doped with various doping concentrations of cerium have been investigated. The Fourier transform infrared (FT-IR) spectra of the prepared catalysts confirmed that MoO3 particles have been successfully doped by cerium. Field emission scanning electron microscopy (FESEM) was performed to visualize the surface morphology of the obtained catalysts. The XRD patterns suggested that the crystallinity of the sample with the lowest doping concentration of 15 mol % was higher in comparison with samples of higher doping concentrations. The volume-averaged crystal sizes of the obtained catalysts were calculated to be 25, 28, and 32 nm for 15, 35, and 60 mol % samples, respectively. The photocatalytic activity along with the reaction kinetics of Ce-doped MoO3 nanoparticles have also been investigated through the dye degradation of methyl orange. The synthesized Ce-doped MoO3 particles with the lowest dopant concentration of 15 mol % exhibited the highest photocatalytic activity for methyl orange dye degradation. It was observed that photo-degradation activity decreased with an increase in the doping concentration of cerium. The predicted rate constants for samples with 15, 35, and 60 mol % doping concentrations were found to be 0.0432, 0.035, and 0.029 min–1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Li, J. Wilcoxon, F. Yin, Y. Chen, R. Palmer, and R. Johnston, Faraday Discuss. 138, 363 (2008)

    Article  CAS  Google Scholar 

  2. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, et al., Science 315, 493 (2007).

    Article  CAS  Google Scholar 

  3. A. Ceylan, K. Jastrzembski, and S. I. Shah, Metall. Mater. Trans. A 37, 2033 (2006).

    Article  Google Scholar 

  4. N. Toshima, H. Yan, and Y. Shiraishi, in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Ed. by B. Corain, G. Schmid, and N. Toshima (Elsevier, Amsterdam, 2007), p. 49.

  5. J. Li, H. He, C. Hu, and J. Zhao, Frontiers Environ. Sci. Eng. 7, 302 (2013).

    Article  CAS  Google Scholar 

  6. F. Tao, M. E. Grass, Y. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron, and G. A. Somorjai, Science 322, 932 (2008).

    Article  CAS  Google Scholar 

  7. E. González, J. Arbiol, and V. F. Puntes, Science 334, 1377 (2011).

    Article  Google Scholar 

  8. B. Lim, M. Jiang, P. H. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia, Science 324, 1302 (2009).

    Article  CAS  Google Scholar 

  9. D. Lahiri, B. Bunker, B. Mishra, Z. Zhang, D. Meisel, C. Doudna, M. Bertino, F. D. Blum, A. Tokuhiro, and S. Chattopadhyay, J. Appl Phys. 97, 094304 (2005).

    Article  Google Scholar 

  10. G. Allaedini, S. M. Tasirin, and P. Aminayi, J. Alloys Compd. 647, 809 (2015).

    Article  CAS  Google Scholar 

  11. G. Allaedini, P. Aminayi, S. M. Tasirin, and E. Mahmoudi, Fullerenes, Nanotubes Carbon Nanostruct. 23, 968 (2015).

    Article  CAS  Google Scholar 

  12. S. W. Han, Y. Kim, and K. Kim, J. Colloid Interface Sci. 208, 272 (1998).

    Article  CAS  Google Scholar 

  13. G. Allaedini, S. M. Tasirin, M. Talib, M. Zainal, P. Aminayi, and I. Puspasari, Appl. Mech. Mater. 719, 132 (2015).

    Article  Google Scholar 

  14. G. Allaedini, S. Tasirin, and P. Aminayi, Int. Nano Lett. 5, 183 (2015).

    Article  CAS  Google Scholar 

  15. E. Abbasi, M. Milani, S. Fekri Aval, M. Kouhi, A. Akbarzadeh, H. Tayefi Nasrabadi, P. Nikasa, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, and M. Samiei, Crit. Rev. Microbiol. 42, 173 (2016).

    CAS  Google Scholar 

  16. X. Wang, F. Song, Q. Chen, T. Wang, J. Wang, P. Liu, M. Shen, J. Wan, G. Wang, and J.-B. Xu, J. Am. Chem. Soc. 132, 6492 (2010).

    Article  CAS  Google Scholar 

  17. P. Weyrich, W. Hölderich, and W. Sachtler, Appl. Catal. A: Gen. 163, 31 (1997).

    Article  CAS  Google Scholar 

  18. Z. Ma, J. Yu, and S. Dai, Adv. Mater. 22, 261 (2010).

    Article  CAS  Google Scholar 

  19. G. Allaedini, P. Aminayi, and S. M. Tasirin, J. Nanomater. 501, 961231 (2015).

    Google Scholar 

  20. G. Allaedini, S. Tasirin, P. Aminayi, Z. Yaakob, and M. Talib, React. Kinet., Mech. Catal. 116, 1 (2015).

    Article  Google Scholar 

  21. A. Parker, J. R. Inst. Chem. 83, 349 (1959).

    Article  Google Scholar 

  22. B. Coq and F. Figueras, J. Mol. Catal. A: Chem. 173, 117 (2001).

    Article  CAS  Google Scholar 

  23. G. Allaedini, S. M. Tasirin, J. Sahari, M. Talib, and M. Zainal, Adv. Mater. Res. 2014, 148 (2014).

    Article  Google Scholar 

  24. J. Plšek and Z. Bastl, J. Catal. 299, 109 (2013).

    Article  Google Scholar 

  25. S. B. Rathod, A. B. Gambhire, B. R. Arbad, and M. K. Lande, ChemInform 41 (30), i (2010).

    Article  Google Scholar 

  26. T.-X. Liu, X.-z. Li, and F.-b. Li, Chem. Eng. J. 157, 475 (2010).

    Article  CAS  Google Scholar 

  27. A.-W. Xu, Y. Gao, and H.-Q. Liu, J. Catal. 207, 151 (2002).

    Article  CAS  Google Scholar 

  28. Z. Shi and L. Jin, J. Non-Cryst. Solids 355, 213 (2009).

  29. A. Phuruangrat, N. Ekthammathat, B. Kuntalue, P. Dumrongrojthanath, S. Thongtem, and T. Thongtem, J. Nanomater. 2014, (2014).

    Google Scholar 

  30. X. Yao, T. Liu, X. Liu, and L. Lu, Chem. Eng. J. 255, 28 (2014).

    Article  CAS  Google Scholar 

  31. G.-R. Li, X.-H. Lu, W.-X. Zhao, C.-Y. Su, and Y.-X. Tong, Cryst. Growth Des. 8, 1276 (2008).

    Article  CAS  Google Scholar 

  32. S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, and W.-F. Hsieh, J. Cryst. Growth 287, 78 (2006).

    Article  CAS  Google Scholar 

  33. S. M. Seyed and M. Parivash, Res. J. Chem. Environ. 17, 101 (2013).

    CAS  Google Scholar 

  34. A. V. Rosario, W. A. Christinelli, R. N. Barreto, and E. C. Pereira, J. Sol-Gel Sci. Technol. 64, 734 (2012).

    Article  CAS  Google Scholar 

  35. N. Pal and A. Bhaumik, Adv. Colloid Interface Sci. 189, 21 (2013).

    Article  Google Scholar 

  36. V. c. Štengl and S. Bakardjieva, J. Phys. Chem. C 114, 19308 (2010).

    Article  Google Scholar 

  37. L. G. Devi and G. Krishnamurthy, J. Phys. Chem. A 115, 460 (2010).

    Article  Google Scholar 

  38. N. Taguchi, A. Iwase, N. Maeda, T. Kojima, R. Taniguchi, S. Okuda, T. Akita, T. Abe, T. Kambara, and H. Ryuto, Rad. Phys. Chem. 78, 1049 (2009).

    Article  CAS  Google Scholar 

  39. H. Zhang, J. Okuni, and N. Toshima, J. Colloid Interface Sci. 354, 131 (2011).

    Article  CAS  Google Scholar 

  40. S. Salimah, J. Chem. Eng. Process Technol. 3, 122 (2012).

    Google Scholar 

  41. W. Kuang, Y. Fan, and Y. Chen, Catal. Lett. 50, 31 (1998).

    Article  CAS  Google Scholar 

  42. Y. Zheng, K. Liu, H. Qiao, Y. Zhang, Y. Song, M. Yang, Y. Huang, N. Guo, Y. Jia, and H. You, Cryst EngComm 13, 1786 (2011).

    Article  CAS  Google Scholar 

  43. Y. Sun, X. Hu, C. Y. Jimmy, Q. Li, W. Luo, L. Yuan, W. Zhang, and Y. Huang, Energy Environ. Sci. 4, 2870 (2011).

    Article  CAS  Google Scholar 

  44. H. F. McMurdie, M. C. Morris, E. H. Evans, B. Paretzkin, W. Wong-Ng, L. Ettlinger, and C. R. Hubbard, Powder Diffract. 1, 64 (1986).

    Article  CAS  Google Scholar 

  45. A. Chithambararaj, D. B. Mathi, N. R. Yogamalar, and A. C. Bose, Mater. Res. Express 2, 055004 (2015).

    Article  Google Scholar 

  46. R. Ahmed, R. Jamil, and M. S. Ansari, IOP Conf. Ser.: Mater. Sci. Eng., 012044 (2014).

    Google Scholar 

  47. Y. Wang, L. Zhang, S. Li, and P. Jena, J. Phys. Chem. C 113, 9210 (2009).

    Article  CAS  Google Scholar 

  48. A. Malik, S. Hameed, M. J. Siddiqui, M. M. Haque, and M. Muneer, Int. J. Photoenergy 2013, 9 (2013).

    Article  Google Scholar 

  49. A. George, S. K. Sharma, S. Chawla, M. Malik, and M. Qureshi, J.Alloys Compd. 509, 5942 (2011).

    Article  CAS  Google Scholar 

  50. J. R. Sohn, E. W. Chun, and Y. I. Pae, Bull. Korean Chem. Soc. 24, 1785 (2003).

    Article  CAS  Google Scholar 

  51. Y.-J. Lin, Y.-H. Chang, W.-D. Yang, and B.-S. Tsai, J. Non-Cryst. Solids 352, 789 (2006).

    Article  CAS  Google Scholar 

  52. B. M. Reddy, I. Ganesh, E. P. Reddy, A. Fernández, and P. G. Smirniotis, J. Phys. Chem. B 105, 6227 (2001).

    Article  CAS  Google Scholar 

  53. N. F. Djaja and R. Saleh, Mater. Sci. Appl. 4, 145 (2013).

    CAS  Google Scholar 

  54. S. Kalpagam and T. Kannadasan, J. Chem., Biol. Phys. Sci. 4, 9 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazaleh Allaedini.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaedini, G., Tasirin, S.M. & Aminayi, P. The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst. Russ. J. Phys. Chem. 90, 2080–2088 (2016). https://doi.org/10.1134/S0036024416080094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416080094

Keywords

Navigation