Skip to main content
Log in

Molecular dynamics simulation of the water transportation through a carbon nanotube. The effect of electric field

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, we have investigated how to control the net flux of water molecules transported through a CNT using an orthogonal and axial electric field. The flow of water molecules through CNT decrease as the orthogonal electric field strength (E) increased from 1 to 3 V nm–1. When E increases over 3 V nm–1, the flow of water molecules through the CNT was turned off and zero water flow was observed. Both the number of water molecules in tube and free energy values was influenced by water flow. A reverse behavior was observed in the case of axial electric field by constantly maintaining electric field direction in the direction of the water flow. Increase of water flow with E of axial electric field was revealed and it can be concluded that water permeation through CNT is much sensitive to the axial electric field strength than the orthogonal electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Q. Zhu, E. Tajkhorshid, and K. Schulte, Biophys. J. 86, 50 (2004).

    Article  CAS  Google Scholar 

  2. F. Q. Zhu, E. Tajkhorshid, and K. Schulte, Biophys. J. 83, 154 (2002).

    Article  CAS  Google Scholar 

  3. M. D. Ma, L. Shen, J. Sheridan, et al., Phys. Rev. E 83, 36316 (2011).

    Article  Google Scholar 

  4. G. Humme, J. C. Rasaiah, and J. P. Noworyt, Nature 414, 188 (2001).

    Article  Google Scholar 

  5. S. Joseph and N. R. Aluru, Phys. Rev. Lett. 101, 064502 (2008).

    Article  Google Scholar 

  6. R. Wan, H. Lu, and J. Li, Phys. Chem. Chem. Phys. 11, 9898 (2009).

    Article  CAS  Google Scholar 

  7. J. K. Holt, H. G. Park, Y. M. Wang, et al., Science 312, 1034 (2006).

    Article  CAS  Google Scholar 

  8. J. T. Frey and D. J. Doren, TubeGen Online (University of Delaware, Newark DE, 2011). http:// turin.nss.udel.edu/research/tubegenonline.htm.

    Google Scholar 

  9. D. van der Spoel, J. Comput. Chem. 26, 1701 (2005).

    Article  Google Scholar 

  10. H. Ga, Nano Lett. 3, 471 (2003).

    Article  Google Scholar 

  11. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publ., 1987).

    Google Scholar 

  12. S. Vaitheeswaran, H. Yin, and J. C. Rasaiah, J. Phys. Chem. B 109, 6629 (2005).

    Article  CAS  Google Scholar 

  13. J. Y. Li, X. J. Gong, H. J. Lu, et al., Proc. Natl. Acad. Sci. USA 104, 3687 (2007).

    Article  CAS  Google Scholar 

  14. A. V. Raghunathan and N. R. Aluru, Phys. Rev. Lett. 97, 1 (2006).

    Article  Google Scholar 

  15. M. E. Suk and N. R. Aluru, Phys. Chem. Chem. Phys. 11, 8614 (2009).

    Article  CAS  Google Scholar 

  16. X. J. Gong, J. Y. Li, H. J. Lu, et al., Nature Nanotechnol. 2, 709 (2007).

    Article  CAS  Google Scholar 

  17. C. Y. Won, S. Joseph, and N. R. Aluru, J. Chem. Phys. 125, 117701 (2006).

    Article  Google Scholar 

  18. J. A. Garate, N. J. English, and J. M. D. MacElroy, J. Chem. Phys. 131, 8 (2009).

    Article  Google Scholar 

  19. J. Dzubiella, R. J. Allen, and J. P. Hansen, J. Chem. Phys. 120, 5001 (2004).

    Article  CAS  Google Scholar 

  20. G. E. Zhen-Peng, S. H. Yan-Chao, and L. Xiao-Yi, Acta Phys.-Chim. Sin. 29, 1655 (2013).

    Google Scholar 

  21. J. Y. Su and H. X. Guo, ACS Nano 5, 351 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ghadamgahi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadamgahi, M., Ajloo, D. Molecular dynamics simulation of the water transportation through a carbon nanotube. The effect of electric field. Russ. J. Phys. Chem. 89, 2120–2125 (2015). https://doi.org/10.1134/S0036024415110059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415110059

Keywords

Navigation