Skip to main content
Log in

Thermal Decomposition of Acidic Cobalt(II) Carboxylates with Unsaturated Dicarboxylic Anions

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The thermal decomposition of acidic cobalt carboxylates (ACCs) with unsaturated carboxylic anions has been studied by TG/DTA in combination with DSC and mass spectrometry of gaseous thermolysis products. The temperature ranges of the main ACC thermal decomposition stages have been determined as (1) 50–225°С for dehydration (2) 210–450°C for dehydrated carboxylate polymerization, and (3) 370–500°C for decarboxylation. It has been concluded that the listed stages may superimpose on one another and occur simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Kh. Al’ Khazradzhi, A. V. Krylov, M. V. Kulikova, et al., Tonkie Khim. Tekhnol. 11, 28 (2016).

    Google Scholar 

  2. A. D. Pomogailo, A. S. Rozenberg, and G. I. Dzhardimalieva, Russ. Chem. Rev. 80, 257 (2011). https://doi.org/10.1070/RC2011v080n03ABEH004079

    Article  CAS  Google Scholar 

  3. A. D. Pomogailo and G. I. Dzhardimalieva, Metal Polymer Hybrid Nanocomposites (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  4. Y. Li, X.-Y. Yang, Y. Feng, et al., Critical Rev. Solid State Mater. Sci. 37, 1 (2012). https://doi.org/10.1080/10408436.2011.606512

    Article  CAS  Google Scholar 

  5. A.-S. Malik, M. J. Duncan, and P. G. Bruce, J. Mater. Chem. 13, 2123 (2003).

    Article  CAS  Google Scholar 

  6. R. L. Frost, W. Martens, and M. O. Adebajo, J. Therm. Anal. Calom. 81, 351 (2005).

    Article  CAS  Google Scholar 

  7. A. Y. Ali-Mohamed, J. Coord. Chem. 29, 233 (1993).

    Article  Google Scholar 

  8. F. T. Chuk, M. Koleva, and S. Mikhailova, Farmatsiya 38, 16 (1988).

    Google Scholar 

  9. K. M. Alam, F. M. Kaniz, and A. Gulzar, Pak. J. Sci. Ind. Res. 30, 707 (1987).

    Google Scholar 

  10. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).

    Article  CAS  Google Scholar 

  11. W. W. Yu, Y. A. Wang, and X. Peng, Chem. Mater. 15, 4300 (2003).

    Article  CAS  Google Scholar 

  12. B. S. Randhawa, H. Kaur, H. S. Dosanjh, and J. Singh, Ceram. Int. 42, 8891 (2016). https://doi.org/10.1016/j.ceramint.2016.02.142

    Article  CAS  Google Scholar 

  13. F. Marandi, L. Hashemi, A. Morsali, and H. Krautscheid, Ultrason. Sonochem. 32, 86 (2016). https://doi.org/10.1016/j.ultsonch.2016.02.022

    Article  CAS  PubMed  Google Scholar 

  14. A. Saritha, B. Raju, D. N. Rao, et al., Adv. Powder Technol. 26, 349 (2015). https://doi.org/10.1016/j.apt.2014.11.005

    Article  CAS  Google Scholar 

  15. S.-C. Liu, Z. F. Yue, and Y. Liu, J. Porous Mater. 22, 465 (2015). https://doi.org/10.1007/s10934-015-9915-y

    Article  CAS  Google Scholar 

  16. B. Donkova and G. Avdeev, J. Therm. Anal. Calorim. 121, 567 (2015). https://doi.org/10.1007/s10973-015-4590-4

    Article  CAS  Google Scholar 

  17. K. O. Abdulwahab, M. A. Malik, P. O’Brien, and G. A. Timco, Mater. Sci. Semiconductor Process. 27, 303 (2014). https://doi.org/10.1016/j.mssp.2014.06.052

    Article  CAS  Google Scholar 

  18. D. Saikia, P. K. Saikia, P. K. Gogoi, et al., Mater. Chem. Phys. 131, 223 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.011

    Article  CAS  Google Scholar 

  19. S. A. Semenov, D. V. Drobot, V. Yu. Musatova, et al., Russ. J. Inorg. Chem. 60, 897 (2015). https://doi.org/10.1134/S0036023615080161

    Article  CAS  Google Scholar 

  20. A. D. Pomogailo, G. I. Dzhardimalieva, and A. S. Rozenberg, J. Nanoparticle Res. 5, 497 (2003). https://doi.org/10.1023/B:NANO.0000006091.92638.a5

    Article  CAS  Google Scholar 

  21. L. I. Yudanova, V. A. Logvinenko, and L. A. Sheludyakova, Russ. J. Inorg. Chem. 53, 1459 (2008). https://doi.org/10.1134/S0036023608090180

    Article  Google Scholar 

  22. V. A. Shershnev, G. I. Dzhardimalieva, and D. P. Kiryukhin, Russ. Chem. Bull. 62, 1649 (2013). https://doi.org/10.1007/s11172-013-0239-2

    Article  CAS  Google Scholar 

  23. K. Van Werde, D. Mondelaers, G. Vanhoyland, et al., J. Mater. Sci. 37, 81 (2002).

    Article  CAS  Google Scholar 

  24. D. P. Domonov, S. I. Pechenyuk, A. N. Gosteva, et al., Vestn. YuUrGU, Ser. Khim. 6, 5 (2014).

    Google Scholar 

  25. S. A. Semenov, V. Yu. Musatova, D. V. Drobot, and G. I. Dzhardimalieva, Russ. J. Inorg. Chem. 63, 1217 (2018). https://doi.org/10.1134/S0036023618090164

    Article  CAS  Google Scholar 

  26. N. P. Porollo, Z. G. Aliev, G. I. Dzhardimalieva, et al., Izv. Akad. Nauk, Ser. Khim., No. 2, 375 (1997).

  27. A. S. Rozenberg, E. I. Aleksandrova, G. I. Dzhardimalieva, et al., Akad. Nauk, Ser. Khim., No. 10, 1743 (1993).

  28. E. I. Aleksandrova, G. I. Dzhardimalieva, A. S. Rozenberg, and A. D. Pomogailo, Izv. Akad. Nauk, Ser. Khim., No. 2, 308 (1993).

  29. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997; Binom Laboratoriya Znanii, Moscow, 2008).

  30. G. B. Sergeev, Nanochemistry (Moscow, 2007) [in Russian].

  31. N. N. Volkova, G. I. Dzhardimalieva, B. E. Krisyuk, et al., Russ. Chem. Bull. 65, 2025 (2016). https://doi.org/10.1007/s11172-016-1547-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project nos. 13-03-00342 and 19-03-00237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Semenov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, S.A., Musatova, V.Y., Drobot, D.V. et al. Thermal Decomposition of Acidic Cobalt(II) Carboxylates with Unsaturated Dicarboxylic Anions. Russ. J. Inorg. Chem. 65, 61–68 (2020). https://doi.org/10.1134/S0036023620010143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620010143

Keywords:

Navigation