Skip to main content
Log in

Ozone Adsorption and Release by Hexagonal Manganese Clusters (MnAkBi)m · nH2O (A, B = O, SO4, H2SO4; i, k = 0, 1, 2; n = 3–15, m = 3, 6, 12): Quantum-Chemical Modeling

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Quantum-chemical modeling of the structure, electronic properties, and stability of hexagonal manganese clusters (MnAkBi)m · nH2O (A, B = O, SO4, H2SO4; i, k = 0, 1, 2; n = 3–15, m = 3, 6, 12) has been performed by the density functional theory method with gradient correction (PBE and B3LYP). It has been demonstrated that the hexagonal manganese clusters can react with water to release oxygen and ozone (upon the transition to low-lying excited states, for example, on heating or exposure to light). The release of ozone from the (MnO2)n clusters (n = 3, 6, 12, …) requires the smallest energy input. It has been revealed that the interaction with hydrogen in the gas phase can lead to the adsorption of ozone onto the cluster surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Dzhabiev, D. N. Moiseev, and A. E. Shilov, Dokl. Biochem. Biophys. 402, 230 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. T. S. Dzhabiev, Kinet. Catal. 51, 788 (2010). doi https://doi.org/10.1134/S0023158410060029

    Article  CAS  Google Scholar 

  3. P. J. Ziemann and A. W. Castleman, Jr., Phys. Rev. B 46, 13480 (1992).

    Article  CAS  Google Scholar 

  4. H. Kino, L. K. Wagner, and L. Mitas, J. Comp. Theor. Nanosci. 6, 2583 (2009).

    Article  CAS  Google Scholar 

  5. A. Kirilyuk, K. Demyk, G. Helden, et al., J. Appl. Phys. 93, 7379 (2003).

    Article  CAS  Google Scholar 

  6. S. K. Nayak and P. Jena, J. Am. Chem. Soc. 121, 644 (1999).

    Article  CAS  Google Scholar 

  7. S. K. Nayak and P. Jena, Phys. Rev. Lett. 81, 2970 (1998).

    Article  CAS  Google Scholar 

  8. R. W. G. Wyckoff, Crystal Structures (Interscience, NewYork, 1964).

    Google Scholar 

  9. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  10. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  11. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  12. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  13. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  16. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  17. B. J. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).

    Article  CAS  Google Scholar 

  18. Gaussian 03, Revision C 02, Gaussian, Inc., Wallingford CT, 2004.

  19. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovolsky, and V. M. Volokhov, Russ. Chem. Bull. 65, 621 (2016). doi https://doi.org/10.1007/s11172-016-1346-7

    Article  CAS  Google Scholar 

  20. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovolsky, and V. M. Volokhov, Russ. J. Electrochem. 52, 988 (2016). doi https://doi.org/10.1134/S1023193516100141

    Article  CAS  Google Scholar 

  21. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 61, 1677 (2016). doi https://doi.org/10.1134/S0036023616130040

    Article  CAS  Google Scholar 

  22. A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, et al., Russ. J. Inorg. Chem. 59, 816 (2014).

    Article  CAS  Google Scholar 

  23. T. S. Zyubina, L. V. Shmygleva, R. V. Pisarev, et al., Russ. Chem. Bull, No. 8, 1521 (2012).

    Article  CAS  Google Scholar 

  24. A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 58, 56 (2013). doi https://doi.org/10.1134/S003602361301021X

    Article  CAS  Google Scholar 

  25. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. Chem. Bull. 62, 363 (2013). doi https://doi.org/10.1007/s11172-013-0047-8

    Article  CAS  Google Scholar 

  26. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, et al., Russ. J. Electrochem. 49, 788 (2013). doi https://doi.org/10.1134/S1023193513080223

    Article  CAS  Google Scholar 

  27. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 61, 1545 (2016). doi https://doi.org/10.1134/S0036023616120238

    Article  CAS  Google Scholar 

  28. A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 62, 1182 (2017).

    Article  CAS  Google Scholar 

  29. T. S. Zyubina, L. V. Shmygleva, R. V. Pisarev, et al., Izv. Akad. Nauk, Ser. Khim. 66, 62 (2017).

    CAS  Google Scholar 

  30. A. S. Zyubin, T. S. Zyubina, O. V. Kravchenko, et al., Russ. J. Inorg. Chem. 62, 309 (2017). doi https://doi.org/10.1134/S0036023617030196

    Article  CAS  Google Scholar 

  31. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 62, 1051 (2017). doi https://doi.org/10.1134/S0036023617080198

    Article  CAS  Google Scholar 

  32. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 62, 1360 (2017). doi https://doi.org/10.1134/S0036023617100199

    Article  CAS  Google Scholar 

  33. T. S. Dzhabiev and D. N. Moiseev, Russ. J. Phys. Chem. A 81, 284 (2007). doi https://doi.org/10.1134/S0036024407020239

    Article  CAS  Google Scholar 

  34. S. Ganguly, M. Kabir, C. Autieri, and B. Sanyal, J. Phys.: Condens. Matter 27, 056002 (2015). doi https://doi.org/10.1088/0953-8984/27/5/056002

    Google Scholar 

  35. S. M. Lang, I. Fleischer, T. M. Bernhardt, et al., Nano Lett. 13, 5549 (2013). doi https://doi.org/10.1021/nl4031456

    Article  CAS  PubMed  Google Scholar 

  36. S. M. Lang, T. M. Bernhardt, D. M. Kiawi, et al., Angew. Chem., Int. Ed. Engl. 54, 15113 (2015).

    Article  CAS  Google Scholar 

  37. M. J. Han, T. Ozaki, and J. Yu, J. Chem. Phys. 123, 034306 (2005).

    Article  CAS  Google Scholar 

  38. T. Takashima, K. Hashimoto, and R. Nakamura, J. Am. Chem. Soc. 134, 1519 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. M. Morita, C. Iwakura, and H. Tamura, Electrochim. Acta 24, 357 (1979).

    Article  CAS  Google Scholar 

  40. S. Trasatti, Electrochim. Acta 29, 1503 (1984).

    Article  CAS  Google Scholar 

  41. E. Y. Tsui and T. Agapie, Proc. Natl. Acad. Sci. U.S.A. 110, 10084 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. D. M. Robinson, Y. B. Go, M. Mui, et al., J. Am. Chem. Soc. 135, 3494 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. I. Zaharieva, P. Chernev, M. Risch, et al., Energy Environ. Sci. 5, 7081 (2012).

    Article  CAS  Google Scholar 

  44. D. M. Robinson, Y. B. Go, M. Greenblatt, and G. C. Dismukes, J. Am. Chem. Soc. 132, 11467 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. R. Brimblecombe, G. F. Swiegers, G. C. Dismukes, and L. Spiccia, Angew. Chem., Int. Ed. Engl. 47, 7335 (2008).

    Article  CAS  Google Scholar 

  46. R. Brimblecombe, A. Koo, G. C. Dismukes, et al., J. Am. Chem. Soc. 132, 2892 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. R. Brimblecombe, A. Koo, G. C. Dismukes, et al., ChemSusChem 3, 1146 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, et al., Acc. Chem. Res. 42, 1935 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. R. Brimblecombe, D. R. J. Kolling, A. M. Bond, et al., Inorg. Chem. 48, 7269 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. R. Brimblecombe, A. M. Bond, G. C. Dismukes, et al., Phys. Chem. Chem. Phys. 11, 6441 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. R. K. Hocking, R. Brimblecombe, L.-Y. Chang, et al., Nat. Chem. 3, 461 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. A. E. Kuznetsov, Y. V. Geletii, C. L. Hill, and D. G. Musaev, J. Phys. Chem. A 114, 11417 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. S. M. Lang, I. Fleischer, T. M. Bernhardt, et al., J. Phys. Chem. C 119, 10881 (2015).

    Article  CAS  Google Scholar 

  54. S. M. Lang, T. M. Bernhardt, D. M. Kiawi, et al., Phys. Chem. Chem. Phys. 18, 15727 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Zyubina.

Additional information

Original Russian Text © T.S. Zyubina, T.S. Dzhabiev, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 11, pp. 1440–1451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyubina, T.S., Dzhabiev, T.S. Ozone Adsorption and Release by Hexagonal Manganese Clusters (MnAkBi)m · nH2O (A, B = O, SO4, H2SO4; i, k = 0, 1, 2; n = 3–15, m = 3, 6, 12): Quantum-Chemical Modeling. Russ. J. Inorg. Chem. 63, 1461–1471 (2018). https://doi.org/10.1134/S0036023618110220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618110220

Keywords

Navigation