Skip to main content
Log in

Evolution of Schooling Behavior in Fish

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Evolution of schooling behavior in fish is discussed. For the first time, schooling was formed in early Teleostei ca 200–220 Ma years BP. There are no strict data on the presence of this form of social behavior in older Craniata. It is supposed that the evolutionary path of schooling followed from asociality to protoschools and then to true equipotential schools. The schooling behavior might disappear and appear again repeatedly and independently in different groups of teleosteans. Formation of schooling depended on Teleostei’s mode of life, first of all, on distribution to the pelagial, and it did not strictly depend on the evolutionary age or phylogenetic relationships of taxonomic groups or particular species. Schooling might be transformed into other types of social behavior. The scheme of evolution of the schooling behavior is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arratia, G., Mesozoic halecostomes and the early radiation of teleosts, Mesozoic Fishes, Part 3: Systematics, Paleoenvironments, Biodiversity, Arratia, G. and Timoti, A., Eds., Munich: Verlag Dr. Friedrich Pfel, 2004, pp. 279–315.

    Google Scholar 

  2. Baskin, L.M., Tolpa i stado (The Crowd and The Herd), St. Petersburg: Nestor-Istoriya, 2017.

  3. Blaylock, R.A., A massive school of cownose rays, Rhinoptera bonasus (Rhinopteridae), in lower Chesapeake Bay, Virginia, Copeia, 1989, no. 3, pp. 744–748.

  4. Breder, C.M., Studies on social groupings in fishes, Bull. Am. Mus. Nat. Hist., 1959, vol. 117, no. 1, pp. 393–482.

    Google Scholar 

  5. Breder, C.M. and Halpern, F., Innate and acquired behavior affecting the aggregations of fishes, Physiol. Zool., 1946, vol. 19, no. 2, pp. 154–190.

    Article  PubMed  Google Scholar 

  6. Chen, M.J., Coss, R.G., and Goldthwaite, R.O., Timing of dispersal in juvenile jewelfish during development is unaffected by available space, Dev. Psychobiol., 1983, vol. 16, no. 4, pp. 303–310.

    Article  CAS  PubMed  Google Scholar 

  7. Collins, A.B., Heupel, M.R., and Motta, P.J., Residence and movement patterns of cow nose rays Rhinoptera bonasus within a south-west Florida estuary, J. Fish Biol., 2007, vol. 71, pp. 1159–1178.

    Article  Google Scholar 

  8. Demšar, J., Štrumbelgj, E., and Bajec, I.L., A balanced mixture of antagonistic pressures promotes the evolution of parallel movement, Sci. Rep., 2016, vol. 6, no. 39428. doi 10.1038/srep39428

  9. Dimond, S.J., The Social Behavior of Animals, London: Batsford, 1970.

    Google Scholar 

  10. Disler, N.N., Organy chuvstv sistemy bokovoi linii i ikh znachenie v povedenii ryb (Sensory Organs of the Lateral Line and Its Role in Fish Behavior), Moscow: Akad. Nauk SSSR, 1960.

  11. Dmitrieva, E.N., Development of nonmigratory bream, Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1960, no. 28, pp. 41–78.

  12. Eibl-Eibesfeldt, I., Freiwasserbeobachtungen zur Deutung des Schwarmverhaltens verschiedener Fische, Z. Tierphychol., 1962, vol. 19, no. 2, pp. 165–182.

    Article  Google Scholar 

  13. Faucher, K., Parmentier, E., Becco, C., et al., Fish lateral system is required for accurate control of shoaling behavior, Anim. Behav., 2010, vol. 79, pp. 679–687.

    Article  Google Scholar 

  14. FishBase, Version 02/2018, Froese, R. and Pauly, D., Eds., 2018. http://www.fishbase.org.

  15. Greenwood, A.K., Wark, A.R., Yoshida, K., and Peichel, C.L., Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks, Curr. Biol., 2013, vol. 23, pp. 1884–1888.

    Article  CAS  PubMed  Google Scholar 

  16. Greenwood, A.K., Ardekani, R., McCann, S.R., et al., Genetic mapping of natural variation in schooling tendency in the threespine stickleback, G3: Genes, Genomes,Genet., 2015, vol. 5, no. 5, pp. 761–769. doi 10.1534/g3.114.016519

    Google Scholar 

  17. Gregson, J.N.S. and Burt de Perera, T., Shoaling in eyed and blind morphs of the characin Astyanax fasciatus under light and dark conditions, J. Fish Biol., 2007, vol. 70, no. 5, pp. 1615–1619. doi 10.1111/j.1095-8649.2007.01430.x

    Article  Google Scholar 

  18. Herbert-Read, J.E., Perna, A., Mann, R.P., et al., Inferring the rules of interaction of shoaling fish, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 46, pp. 18726–18731. doi 10.1073/pnas.1109355108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hochachka, P.W. and Somero, G.N., Strategies of Biochemical Adaptation, Philadelphia: W.B. Saunders, 1973.

    Google Scholar 

  20. Il’ina, L.K., Local migrations and herd structure of fish juveniles in the coastal zone of Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk SSSR, 1968, no. 16 (19), pp. 182–201.

  21. Ioannou, C.C., Guttal, V., and Couzin, I.D., Predatory fish select for coordinated collective motion in virtual prey, Science, 2012, vol. 337, pp. 1212–1215.

    Article  CAS  PubMed  Google Scholar 

  22. Kajiura, S.M. and Tellman, S.L., Quantification of massive seasonal aggregations of blacktip sharks (Carcharhinus limbatus) in southeast Florida, PLoS One, 2016, vol. 11, no. 3, pp. e0150911. doi 10.1371/journal.pone.0150911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Katz, Y., Tunstrøm, K., Ioannou, C.C., et al., Inferring the structure and dynamics of interactions in schooling fish, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 46, pp. 18 720–18 725. doi 10.1073/pnas.1107583108

    Article  CAS  Google Scholar 

  24. Kerr, J.P., Grouping behavior of the zebrafish as influenced by social isolation, Am. Zool., 1963, vol. 2, pp. 532–533.

    Google Scholar 

  25. Klimley, A.P., Schooling in Sphyrna lewini, a species with low risk of predation: a non-egalitarian state, Z. Tierpsychol., 1985, vol. 70, pp. 297–319.

    Article  Google Scholar 

  26. Köhler, D., Experimente zum Schwarmverhalten des Uklei, Aquarien-Terrarien., 1988, vol. 35, no. 7, pp. 239–243.

    Google Scholar 

  27. Kowalko, J.E., Rohner, N., Rompani, S.B., et al., Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms, Curr. Biol., 2013, vol. 23, pp. 1874–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  29. Kronauer, D.J.C. and Levine, J.D., The ultimate and proximate underpinnings of social behavior, J. Exp. Biol., 2017, vol. 220, no. 1, pp. 4–5.

    Article  PubMed  Google Scholar 

  30. Kryzhanovskii, S.G., Disler, N.N., and Smirnova, E.N., Ecological and morphological pattern of development of Percoidei fishes, Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1953, no. 10, pp. 3–138.

  31. Kryzhanovskii, S.G., Smirnov, A.I., and Soin, S.G., Development of fishes in the Amur River, Tr. Amur. Ikhtiol. Eksp. 1945–1949, 1951, vol. 2, pp. 5–222.

  32. Lange, N.O., Development of Cuban and Don common roach Rutilus rutilus Heckeli (Nordmann) and Caspian roach Rutilus rutilus caspicus (Jakowlew), Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1960a, no. 25, pp. 47–98.

  33. Lange, N.O., Development of the roach in various ecological conditions, Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1960b, no. 28, pp. 5–40.

  34. Larsson, M., Possible functions of the octavolateralis system in fish schooling, Fish Fish., 2009, vol. 10, pp. 344–353.

    Article  Google Scholar 

  35. Larsson, M., Why do fish school? Curr. Zool., 2012, vol. 58, no. 1, pp. 116–128.

    Article  Google Scholar 

  36. Lauder, G.V. and Liem, K.F., The evolution and interrelationships of actinopterygian fishes, Bull. Mus. Comp. Zool., 1983, vol. 150, pp. 95–197.

    Google Scholar 

  37. LeBoeuf, A.C., Benton, R., and Keller, L., The molecular basis of social behavior: models, methods and advances, Curr. Opin. Neurobiol., 2013, vol. 23, pp. 3–10.

    Article  CAS  PubMed  Google Scholar 

  38. Lorenz, K.Z., Das Sogenannte Böse: Zur Naturgeschichte der Aggression, Wien: G. Borotha-Schoeler Verlag, 1963.

    Google Scholar 

  39. Lorenz, K., On Aggression, New York: Harcourt, Brace and World, 1966.

    Google Scholar 

  40. Makris, N.C., Ratilal, P., Symonds, D.T., et al., Fish population and behavior revealed by instantaneous continental shelf-scale imaging, Science, 2006, vol. 311, pp. 660–663.

    Article  CAS  PubMed  Google Scholar 

  41. Manning, A., An Introduction to Animal Behavior, London: Edward Arnold Publ., 1979. Manteifel’, B.P., Ekologicheskie i evolyutsionnye aspekty povedeniya zhivotnykh (Ecological and Evolutionary Aspects of Animal’s Behavior), Moscow: Nauka, 1987.

  42. Mikheev, V.N., Choice between individual and social behavior of fishes with facultative social strategy, Vopr. Ikhtiol., 1995, vol. 35, no. 4, pp. 515–518.

    Google Scholar 

  43. Mochek, A.D., Etologicheskaya organizatsiya pribrezhnykh soobshchestv morskikh ryb (Ethological Organization of Coastal Communities of Marine Fishes), Moscow: Nauka, 1987.

  44. Myers, R.F., Micronesian Reef Fishes, Barrigada: Coral Graphics, 1991.

  45. Nelson, J.S., Fishes of the World, New Yrk: Wiley, 2006.

  46. Novitskaya, L.I., Predshestvenniki ryb, beschelyustnye-nachalo puti k cheloveku (Agnatha Species as the Ancestors of Fishes and New Way to a Man), Moscow: GEOS, 2015.

  47. O’Toole, B., Phylogeny of the species of the superfamily Echeneoidea (Perciformes: Carangoidei: Echeneidae, Rachycentridae, and Coryphaenidae), with an interpretation of echeneid hitchhiking behavior, Can. J. Zool., 2002, vol. 80, pp. 596–623.

    Article  Google Scholar 

  48. Panov, E.N., Povedenie zhivotnykh i etologicheskaya struktura populyatsii (Animal’s Behavior and Ethological Structure of Populations), Moscow: Nauka, 1983.

  49. Parzefall, J., Field observations in epigean and cave populations of the Mexican characid Astyanax mexicanus (Pisces, Characidae), Mém. Biospéol., 1983, vol. 10, pp. 171–176.

    Google Scholar 

  50. Patterson, C., Osteichthyes: Teleostei, in The Fossil Record, Benton, M.J., Ed., London: Chapman and Hall, 1993, pp. 621–656.

    Google Scholar 

  51. Pavlov, D.S., Optomotornaya reaktsiya i osobennosti orientatsii ryb v potoke vody (Optomotor Reaction and Specific Orientation of Fishes in Water Flow), Moscow: Nauka, 1970.

  52. Pavlov, D.S. and Kasumyan, A.O., Patterns and mechanisms of schooling behavior in fish: a review, J. Ichthyol., 2000, vol. 40, suppl. 2, pp. S163–S231.

    Google Scholar 

  53. Pitcher, T.J. and Parrish, B.L., Functions of shoaling behavior in teleosts, in Behaviour of Teleost Fishes, Pitcher, T.J., Ed., London: Chapman and Hall, 1993, pp. 262–439.

    Book  Google Scholar 

  54. Popper, A.N. and Platt, C., Inner ear and lateral line, in The Physiology of Fishes, Evans, D.H., Ed., Boca Raton: CRC Press, 1993, pp. 99–136.

    Google Scholar 

  55. Radakov, D.V., Stainost’ ryb kak ekologicheskoe yavlenie (Agglomeration of Fishes as Ecological Phenomenon), Moscow: Nauka, 1972.

  56. Radakov, D.V., Schooling in the Ecology of Fish, New York: Wiley, 1973.

    Google Scholar 

  57. Rogers, C., Roden, C., Lohoefener, R., et al., Behavior, distribution, and relative abundance of cownose ray schools Rhinoptera bonasus in the northern Gulf of Mexico, Northeast Gulf Sci., 1990, vol. 11, pp. 69–76.

    Article  Google Scholar 

  58. Shaw, E., Schooling fishes, Am. Sci., 1978, vol. 66, pp. 166–175.

    Google Scholar 

  59. Sheehan, M.J., Miller, C.H., Vogt, C.C., and Ligon, R.A., Behavioral evolution: can you dig it? Curr. Biol., 2018, vol. 28, pp. R17–R36.

    Article  CAS  Google Scholar 

  60. Smirnova, E.N., Specific development of Cuban fish in embryonal and larval life periods, Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1957a, no. 20, pp. 71–94.

  61. Smirnova, E.N., Morphological and ecological features of the kutum Rutilus frisii (Nordm.), Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1957b, no. 20, pp. 95–120.

  62. Smirnova, E.N., Morphological and ecological features of the kutum Rutilus frisii kutum Kamensky, Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1961, no. 33, pp. 3–29.

  63. Soin, S.G., Kasumyan, A.O., and Pashchenko, N.I., Ecological and morphological analysis of the common minnow Phoxinus phoxinus (L.) (Cyprinidae), Vopr. Ikhtiol., 1981, vol. 21, no. 4, pp. 695–710.

    Google Scholar 

  64. Székely, T., Moore, A.J., Komdeur, J., et al., Social Behaviour: Genes, Ecology and Evolution, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  65. Tinbergen, N., Social Behaviour in Animals with Special Reference to Vertebrates, London: Methuen, 1953.

    Google Scholar 

  66. Vasnetsov, V.V., Ereemeva, E.F., Lange, N.O., et al., Stages of development of commercial semi-migratory fishes of the Volga and Don rives—bream, carp, Caspian roach, roach, and zander, Tr. Inst. Morfol. Zhivotn., Akad. Nauk SSSR, 1957, no. 17, pp. 7–79.

  67. Wark, A.R., Greenwood, A.K., Taylor, E.M., et al., Heritable differences in schooling behavior among threespine stickleback populations revealed by a novel assay, PLoS One, 2011, vol. 6, no. 3, pp. e18316. doi doi 10.1371/journal.pone.0018316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Werren, J.H., Selfish genetic elements, genetic conflict, and evolutionary innovation, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 10863–10870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams, M., Rearing environments and their effects on schooling of fishes, Publ. Staz. Zool. Napoli, 1976, vol. 40, pp. 238–254.

    Google Scholar 

  70. Wright, D., QTL mapping of behavior in the zebrafish, in Zebrafish Models in Neurobehavioral Research, Kalueff, A.V. and Cachat, J.M., Eds., Totowa, NJ: Humana Press, 2011, vol. 52, pp. 101–141.

    Google Scholar 

  71. Wright, D., Rimmer, L.B., Pritchard, V.L., et al., Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio), Naturwissenschaften, 2003, vol. 90, pp. 374–377.

    Article  CAS  PubMed  Google Scholar 

  72. Wright, D., Nakamichi, R., Krause, J., and Butlin, R.K., QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio), Behav. Genet., 2006, vol. 36, pp. 271–284.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to K.V. Kuzishchin (Moscow State University) for valuable comments on the MS.

The study was supported by the Russian Science Foundation, project nos. 14-14-01171-P (search and analysis of literature) and 14-50-00029 (preparation of MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Additional information

Translated by N. Smirnov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. Evolution of Schooling Behavior in Fish. J. Ichthyol. 58, 670–678 (2018). https://doi.org/10.1134/S0032945218050090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945218050090

Keywords:

Navigation