Skip to main content
Log in

Computer simulation of carbon diffusion near b/2[010](001) dislocation in cementite

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Partial contributions U i to the activation energy for the diffusion of carbon atoms in the Fe3C lattice have been calculated. The U i values have been compared upon the migration of carbon atoms in the ideal lattice, near the stacking-fault plane, and near the core of a partial edge dislocation with a Burgers vector b/2[010]. The most preferable ways of the migration of carbon atoms near the studied structural defects in the (001) cementite plane have been revealed. The values of the stacking-fault energy in this plane have been calculated. The possibility of splitting the dislocation with a Burgers vector b/2[010] into two partial dislocations has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kurdjumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Metallurgiya, Moscow, 1977) [in Russian].

    Google Scholar 

  2. M. Ruda, D. Farkas, and G. Garcia, “Atomistic Simulations in the Fe-C System,” Comput. Mater. Sci. 45, 550–560 (2009).

    Article  CAS  Google Scholar 

  3. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, K. Yu. Okishev, T. I. Tabachnikova, and Yu. V. Khlebnikova., Pearlite in Carbon Steels (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  4. A. Koreeda and K. Shimizu, “Dislocations in Cementite,” Philos. Mag. 17, 1083–1086 (1968).

    Article  CAS  Google Scholar 

  5. A. Inoue, T. Ogura, and T. Masumoto, “Deformation and Fracture Behaviors of Cementite,” Trans. JIM 17, 663–672 (1976).

    CAS  Google Scholar 

  6. A. Inoue, T. Ogura, and T. Masumoto, “Dislocation Structure of Cementite in Cold-Rolled Carbon Steels,” J. Jpn. Inst. Metals 37, 875–882 (1973).

    CAS  Google Scholar 

  7. A. Inoue, T. Ogura, and T. Masumoto, “Microstructures of Deformation and Fracture of Cementite in Pearlitic Carbon Steels Strained at Various Temperatures,” Metall. Trans. A 8, 1689–1695 (1977).

    Article  Google Scholar 

  8. M. A. Shtremel’, Strength of Alloys. Part 2. Deformation (MISIS, Moscow, 1997) [in Russian].

    Google Scholar 

  9. I. L. Yakovleva, L. E. Kar’kina, T. A. Zubkova, and T. I. Tabatchikova, “Effect of Cold Plastic Deformation on the Structure of Granular Pearlite in Carbon Steels,” Phys. Met. Metallogr. 112, 101–107 (2011).

    Article  Google Scholar 

  10. A. S. Ken, “Imperfections and Plastic Deformation of Cementite in Steel,” Acta Metall. 11, 1101–1103 (1963).

    Article  Google Scholar 

  11. A. Inoue, T. Ogura, and T. Masumoto, “Burgers Vectors of Dislocations in Cementite Crystal,” Scr. Metal. 11, 1–5 (1977).

    Article  CAS  Google Scholar 

  12. E. V. Levchenko, A. V. Evteev, I. V. Belova, and G. E. Murch, “Molecular Dynamics Simulation and Theoretical Analysis of Carbon Diffusion in Cementite,” Acta Mater. 57, 846–853 (2009).

    Article  CAS  Google Scholar 

  13. B. Ozturk, V. L. Fearing, J. A. Ruth, and G. Simkovich, “Self-Diffusion Coefficients of Carbon in F3C at 723 K via the Kinetics of Formation of This Compound,” Metal. Trans. A 13, 1871–1873 (1982).

    Article  CAS  Google Scholar 

  14. M. Hillert, L. Hagland, and J. Agren, “Diffusion in Interstitial Compounds with Thermal and Stoichiometric Defects,” J. Appl. Phys. 98, 053511 (2005).

    Article  Google Scholar 

  15. A. Schneider, G. Inden, H. J. Grabke, in Interface Controlled Materials (EUROMAT 99), Ed. by M. Ruhle and H. Gleiter (Wiley, Weinheim, 2000), pp. 30–37.

  16. V. Rosato, “Comparative Behavior of Carbon in BCC and FCC Iron,” Acta Metall. 37, 2759–2763 (1989).

    Article  CAS  Google Scholar 

  17. M. S. Daw and M. I. Baskes, “Embedded Atom Method: Derivation and Application to Impurities, Surfaces and Other Defects in Metals,” Phys. Rev. B: Condens. Matter 29, 6443–6453 (1984).

    Article  CAS  Google Scholar 

  18. R. A. Johnson, G. J. Dienes, and A. C. Damask, “Calculation of the Energy and Migration Characteristics of Carbon and Nitrogen in α-Iron and Vanadium,” Acta Metal. 12, 1215–1224 (1964).

    Article  CAS  Google Scholar 

  19. jrifkin@mail.ims.uconn.edu

  20. K. Yu. Okishev, D. A. Mirzaev, V. M. Schastlivtsev, and I. L. Yakovleva, “Study of the Structure of Cementite in Pearlite from the Broadening of Diffraction Maxima,” Phys. Met. Metallogr. 85, 218–222 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Kar’kina.

Additional information

Original Russian Text © L.E. Kar’kina, I.N. Kar’kin, I.L. Yakovleva, T.A. Zubkova, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 2, pp. 172–178.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar’kina, L.E., Kar’kin, I.N., Yakovleva, I.L. et al. Computer simulation of carbon diffusion near b/2[010](001) dislocation in cementite. Phys. Metals Metallogr. 114, 155–161 (2013). https://doi.org/10.1134/S0031918X13020099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13020099

Keywords

Navigation