Skip to main content
Log in

The evolution of the early precambrian geobiological systems

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Bacterial paleontology provides vast opportunities for the study of all types of sedimentary and volcanic-sedimentary rocks, at any stage of metamorphism and of any age. Bacteria are shown to play an important role in weathering, transfer, sedimentation, and diagenesis of the sediments and in the formation of many minerals that have previously been thought to be abiogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Alfimova and V. A. Matrenichev, “Structural Features of the Profiles of Chemical Weathering in the Early Precambrian of Karelia,” in XVII Conference of Young Scientists Devoted to the Memory of K.O. Krattsa (Petrozavodsk, 2006), pp. 127–129 [in Russian].

  2. American Mineralogist 83(11–12: 2), 1378–1607 (1998).

  3. R. A. Amosov, V. K. Orleanskii, E. A. Zhegallo, et al., “Gold and Cyanobacterial Mats,” in 5th Conference on Bacterial Paleontology: Instruments, Methods, and Problems of Astrobiology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002a), pp. 18–19 [in Russian].

    Google Scholar 

  4. R. A. Amosov, V. V. Stolyarenko, Yu. V. Shchegol’kov, and M. I. Lapina, “Biogenic Hydrothermal Gold Mineralization in Mesozoic Platinum Placers on the Ural Mountains,” in 5th Conference on Bacterial Paleontology: Instruments, Methods, and Problems of Astrobiology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002b), pp. 15–16 [in Russian].

    Google Scholar 

  5. M. M. Astafieva, “Framboidal Structures of Black Shales from the Cambrian of the Siberian Platform and the Permian of the Barents Sea Shelf,” Paleontol. Zh., No. 1, 3–8 (2005) [Paleontol. J. 39 (1), 1–6 (2005)].

  6. M. M. Astafieva, “The Archean of Karelia and Bacterial Paleontology,” in Evolution of Biosphere and Biodiversity: To 70th Anniversary of A.Yu. Rozanov (KMK, Moscow, 2006), pp. 120–128 [in Russian].

    Google Scholar 

  7. M. M. Astafieva, R. Hoover, and A. Yu. Rozanov, “Framboidal Structures in Earth Rocks and in Astromaterials,” Proc. SPIE 5163 (Instruments, Methods, and Missions for Astrobiology: VII, Ed. by R. B. Hoover and A. Yu. Rozanov), 36–47 (2004).

  8. M. M. Astafieva, R. B. Hoover, A. Yu. Rozanov, and A. B. Vrevskiy, “Fossil Microorganisms in Archaean”, Proc. SPIE 6309 (Instruments, Methods, and Missions for Astrobiology: IX, Ed. by R. B. Hoover, G. V. Levin, and A. Yu. Rozanov), 630904-1–630904-10 (2006).

  9. M. M. Astafieva, A. Yu. Rozanov, and D. Cornell, “Early Proterozoic (2.2. Ga) Pillow Lavas of Southern Africa and Fossil Microorganisms,” in 53th Session of the Paleontological Society (St. Petersburg, 2008a), pp. 6–7 [in Russian].

  10. M. M. Astafieva, A. Yu. Rozanov, D. H. Cornell, and R. B. Hoover, “Life Development on the Boundary Lava-Water (on the Example of Palaeoproterozoic Ongeluk Lavas of South Africa),” Proc. SPIE 7097 (2008b).

  11. M. M. Astafieva, A. Yu. Rozanov, and R. B. Hoover, “Framboids: Their Structure and Origin,” Paleontol. Zh., No. 5, 1–7 (2005) [Paleontol. J. 39 (5), 457–464 (2005)].

  12. M. M. Astafieva, A. Yu. Rozanov, G. N. Sadovnikov, and E. V. Sapova, “Fossil Bacteria from the Permotriassic Trappean Strata of Siberia,” Paleontol. J. 43(8), 46–54 (2009).

    Google Scholar 

  13. Bacterial Paleontology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002) [in Russian].

  14. J. F. Banfield and K. H. Nealson (Eds.), “Geomicrobiology: Interactions between Microbes and Minerals,” Rev. Mineral. 35, 1–448 (1997).

    Google Scholar 

  15. P. J. Boston, M. N. Spilde, D. E. Northup, et al., “Cave Biosignature Suites: Microbes, Minerals, and Mars,” Astrobiology 1(1), 25–55 (2001).

    Article  Google Scholar 

  16. M. D. Brasier, O. K. Green, A. P. Jephcoat, et al., “Questioning the Evidence for Earth’s Oldest Fossils,” Nature 416, 76–81 (2002).

    Article  Google Scholar 

  17. D. E. G. Briggs, A. J. Kear, D. M. Martill, P. R. Wilby, “Phosphatization of Soft-Tissue in Experiments and Fossils,” J. Geol. Soc. London 150(6), 1035–1038 (1993).

    Article  Google Scholar 

  18. J. J. Brocks, G. A. Logan, R. Buick, and R. E. Summons, “Archean Molecular Fossils and the Early Rise of Eukaryotes,” Science 285(5430), 1033–1036 (1999).

    Article  Google Scholar 

  19. D. A. Brown, J. A. Sawicki, and B. L. Sheriff, “Alteration of Microbially Precipitated Iron Oxides and Hydroxides,” Am. Mineral. 83(11–12: 2), 1419–1425 (1998).

    Google Scholar 

  20. D. H. Cornell, S. S. Schütte, and B. L. Eglington, “The Ongeluk Basaltic Andesite Formation in Griqualand West, South Africa: Submarine Alteration in a 2222 Ma Proterozoic Sea,” Precambr. Res. 79, 101–123 (1996).

    Article  Google Scholar 

  21. B. Devouagard, M. Posfai, Hua Xin, et al., “Magnetite from Magnetotactic Bacteria: Size Distributions and Twinning,” Am. Mineral. 83, 1387–1398 (1998).

    Google Scholar 

  22. M. R. Fisk, M. C. Storrie-Lombardi, and J. Josef, “The Water-Igneous Rock Interface: Potential Microbial Habitats on Mars,” Proc. SPIE 6309 (Technical Abstract Summary Digest), 176 (2006a).

    Google Scholar 

  23. M. R. Fisk, M. C. Storrie-Lombardi, and J. Josef, “Aqueous Biotic and Abiotic Alteration of Silicate Rock: Evaluation of Landing Sites on Mars for Their Potential of Revealing Evidence for Life,” Proc. SPIE 6309 (Instru ments, Methods, and Missions for Astrobiology: IX, Ed. by R. B. Hoover, G. V. Levin, and A.Yu. Rozanov), 630903-1–630903-9 (2006b).

  24. D. Fortin, F. G. Ferris, and F. G. Beveridge, “Surfacemediated Mineral Development by Bacteria,” Rev. Mineral. 35 (Geomicrobiology: Interactions between Microbes and Minerals, Ed. by J. F. Banfield and K. H. Nealson), 161–180 (1998).

  25. H. Furnes, N. R. Banerjee, K. Muehlenbachs, et al., “Early Life Recorded in Archaean Pillow Lavas,” Science 304, 578–581 (2004).

    Article  Google Scholar 

  26. L. M. Gerasimenko, I. V. Goncharova, G. A. Zavarzin, et al., “Dynamics of Discharge and Absorption of Phosphorus by Cyanobacteria,” in Ecosystem Rearrangements and Evolution of the Biosphere (Nedra, Moscow, 1994), Vol. 1, pp. 348–353 [in Russian].

    Google Scholar 

  27. L. M. Gerasimenko, I. V. Goncharova, E. A. Zhegallo, et al., “Process of Mineralization (Phosphation) Filamentous Cyanobacteria,” Litol. Polezn. Iskop., No. 2, 208–214 (1996).

  28. L. M. Gerasimenko and G. T. Ushatinskaya, “Cyanobacteria, Cyanobacterial Communities, Mats, Biofilms,” in Bacterial Paleontology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002), pp. 36–46 [in Russian].

    Google Scholar 

  29. L. M. Gerasimenko and G. A. Zavarzin, “Relict Cyanobacterial Communities,” in Problems of Pre-Anthropogene Evolution of the Biosphere (Nauka, Moscow, 1993), pp. 222–253 [in Russian].

    Google Scholar 

  30. L. M. Gerasimenko, E. A. Zhegallo, S. I. Zhmur, et al., “Bacterial Paleontology and the Study of Carbonate Chondrites,” Paleontol. Zh., No. 4, 103–125 (1999) [Paleontol. J. 33 (4), 439–461 (1999)].

  31. A. A. Godovikov, Mineralogy (Nedra, Moscow, 1975) [in Russian].

    Google Scholar 

  32. V. K. Golovenok, “Precambrian Crusts of Weathering, their Feature, and the Technique of Lithologic and Geochemical Study,” in Precambrian Crusts of Weathering (Nauka, Moscow, 1975), pp. 16–27 [in Russian].

    Google Scholar 

  33. I. V. Goncharova, L. M. Gerasimenko, G. A. Zavarzin, and G. T. Ushatinskaya, “Formation of Mineral Phosphate Microtubes in the Presence of Galophilic Cyanobacterium Microcoleus chthonoplastues,” Curr. Microbiol. 27, 187–190 (1993).

    Article  Google Scholar 

  34. A. Gorbushina, M. Boettcher, and H.-J. Brumsack, “Biogenic Forsterite and Opal As a Product of Biodeterioration and Lichen Stromatolite Formation in Table Mountain Systems (Tepius) of Venezuela,” Geomicrobiology 18, 117–132 (2001).

    Article  Google Scholar 

  35. B. Jones, R. W. Renaut, and M. R. Rosen, “Microbial Biofacies in Hot-spring Sinters: A Model Based on Ohaaki Pool, North Island, New Zealand,” J. Sediment. Res. 68(3), 413–434 (1998).

    Google Scholar 

  36. G. I. Karavaiko and S. N. Groudev (Eds.), Biogeotechnology of Metals: Proceedings of International Seminar and International Training Course (Moscow, 1985).

  37. J. L. Kirshvink, D. S. Jones, and B. J. MacFadden (Eds.), “Magnetite Biomineralization and Magnetoreception in Organisms (Plenum 2, New York-London, 1985).

    Google Scholar 

  38. A. H. Knoll, “Neozoic Evolution and End Nomental Change,” in Early Life on Earth (Columbia Univ. Press, New York, 1994), pp. 439–449.

    Google Scholar 

  39. A. H. Knoll and E. S. Barghoorn, “Archaean Microfossils Showing Cell Division from the Swaziland System of South Africa,” Science 198, 396–398 (1977).

    Article  Google Scholar 

  40. M. J. Kohn, L. R. Riciputi, and D. L. Orange, “Sulfur Isotopevariability in Biogenic Piryte: Reflections of Heterogeneous Bacterial Colonization?,” Am. Mineral. 83(11–12: 2), 1454–1468 (1998).

    Google Scholar 

  41. M. S. Lougheed and J. J. Mancuso, “Hematite Framboids in the Nagaunee Iron Formation, Michigan: Evidence for Their Biogenic Origin,” Econom. Geol. 68, 202–209 (1973).

    Article  Google Scholar 

  42. H. A. Lowenstam and S. Weiner, On Biomineralization (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  43. J. Lucas and L. Prevot, “Synthesis of Apatite: On the Question of a New Model of the Genesis of Sedimentary Phosphorites,” in Reports of 27th International Geological Committee, Vol. 15, Nonmetallic Minerals (Moscow, 1984a), pp. 211–215 [in Russian].

  44. J. Lucas and L. Prevot, “Syntese de l’apatite par voir Bacterienne a partir, de matiere organique phosphatee et de divers carbonates de calcium dans des eaux douce et marine naturelles,” Chem. Geol., No. 42, 101–118 (1984b).

  45. V. A. Matrenichev, K. I. Stepanov, and O. M. Pupkov, “Stratigraphy and Features of the Composition of Early Proterozoic Volcanites of the Sortavala Upland (Northern Ladoga Region),” Vestn. St. Peterb. Univ., No. 2, 31–44 (2004).

  46. D. S. McKay, A. Yu. Rozanov, R. B. Hoover, and F. Westall, “Phosphate Biomineralization of Cambrian Microorganisms,” Proc. SPIE 3441, 170–176 (1998).

    Article  Google Scholar 

  47. V. A. Melezhik, I. Lepland, A. Yu. Rozanov, and M. M. Astafieva, “2000 Ma Phosphorites in the Context of Evolution of Palaeoproterozoic Ocean Chemistry,” in II International Paleontological Congress (Univ. Sci. and Techn. China Press, Beijing, 2006), pp. 45–46.

    Google Scholar 

  48. Z. B. Namsamraev, V. M. Gorlenko, B. B. Namsamraev, and D. D. Barkhutova, Microbial Communities of Alkaline Hydroterms (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  49. V. K. Orleanskii, R. K. Paul, E. A. Zhegallo, and L. M. Mudrenko, “Laboratory Modeling of Phosphatic of Oncolithological Formations,” Litol. Polezn. Iskop., No. 4, 127–131 (1994).

  50. G. I. Polkin, E. V. Adamov, and V. V. Panin, Technology of Bacterial Leaching Nonferrous and Rare Metals (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  51. A. G. Ponomarenko, “Bacteriomorph Structures in the Mesozoic Lacustrine Deposits,” in 5th Conference on Bacterial Paleontology: Instruments, Methods, and Problems of Astrobiology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002), pp. 63–64 [in Russian].

    Google Scholar 

  52. M. Postfai, P. R. Buseck, D. A. Bazylinski, and R. B. Frankel, “Iron Sulfides from Magnetotactic Bacteria: Structure, Composition, and Phase Transitions,” Am. Mineral. 83(11–12: 2), 1469–1481 (1998).

    Google Scholar 

  53. R. Purohit and A. Bekker, “Geochronologic and Geochemical Constraints on the Age of the Jharmarkotra Carbonates from the Aravalli Supergroup, North-western India,” Geol. Soc. Am. Abstr. Progr. Denver 36(5), 341 (2004).

    Google Scholar 

  54. B. Rasmussen, “Filamentous Microfossils in a 3.235-Million-Year-Old Volcanogenic Massive Sulfide Deposit,” Nature 405, 676–679 (2000).

    Article  Google Scholar 

  55. A. Yu. Rozanov, “Fossil Bacteria and a New Insight into the Processes of Sedimentation,” Soros. Obrazovat. Zh. 10(47), 63–67 (1999).

    Google Scholar 

  56. A. Yu. Rozanov, “Some Problems of Bacterial Mineralization and Sedimentation,” Proc. SPIE 4939, 83–87 (2002).

    Article  Google Scholar 

  57. A. Yu. Rozanov, “Fossil Bacteria, Sedimentogenesis, and Early Stages of Evolution of the Biosphere,” Paleontol. Zh., No. 6, 41–49 (2003) [Paleontol. J. 37 (6), 601–609 (2003)].

  58. A. Yu. Rozanov, “Bacterial Paleontology, Sedimentogenesis, and Early Stages of Evolution of the Biosphere,” in Modern Problems of Geology (Nauka, Moscow, 2004), pp. 448–462 [in Russian].

    Google Scholar 

  59. A. Yu. Rozanov, “Geological Events in the Precambrian Era,” Proc. SPIE 5906, 59060N-1–59060N-9 (2005).

    Google Scholar 

  60. A. Yu. Rozanov, “Precambrian Geobiology,” Paleontol. J. 40(Suppl. 4), 434–443 (2006).

    Article  Google Scholar 

  61. A. Yu. Rozanov and M. M. Astafieva, “Prasinophyceae (Green Algae) from the Lower Proterozoic of the Kola Peninsula,” Paleontol. Zh., No. 4, 90–93 (2008) [Paleontol. J. 42 (4), 425–430 (2008)].

  62. A. Yu. Rozanov, M. M. Astafieva, and R. B. Hoover, “The Early Earth and Its Environments,” Proc. SPIE 7097 (2008a).

  63. A. Yu. Rozanov, M. M. Astafieva, A. B. Vrevskii, et al., “Microfossils from the Early Precambrian Continental Crusts of Weathering of the Fennoscandian Shield,” Otechestv. Geol., No. 3, 83–90 (2008b).

  64. A. Yu. Rozanov and I. S. Barskov, “Diversity and Phylum Distribution of Biominerals,” Adv. Mineral. 3, 247–255 (1998).

    Google Scholar 

  65. A. Yu. Rozanov and G. A. Zavarzin, “Bacterial Paleontology,” Vestn. Ross. Akad. Nauk 67(2), 109–113 (1997).

    Google Scholar 

  66. A. Yu. Rozanov and E. A. Zhegallo, “On the Problem of the Genesis of Ancient Phosphorites of Asia,” Litol. Polezn. Iskop., No. 3, 67–82 (1989).

  67. M. Schidlowski, “A 3.800-Million-Year Isotopic Record of Life from Carbon in Sedimentary Rocks,” Nature, No. 333, 313–318 (1988).

  68. M. Schidlowski, “Carbon Isotopes As Biogeochemical Recorder of Life over 3.8 Ga of Earth History: Evolution of a Concept,” Precambr. Res. 106, 117–134 (2001).

    Article  Google Scholar 

  69. J. W. Schopf (Ed.), Earth’s Biosphere, Its Origin and Evolution (Prinseton Univ. Press, Priceton, 1983).

    Google Scholar 

  70. J. W. Schopf, “Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life,” Science 260(5108), 640–646 (1993).

    Article  Google Scholar 

  71. E. L. Shkol’nik, Tan Tianfu, E. A. Eganov, et al., The Nature of Phosphatic Grains and Phosphorites of the Largest Basins of the World (Dal’nauka, Vladivostok, 1999) [in Russian].

    Google Scholar 

  72. Y. S. Simakova, “Proposed Role of Bacteria in Volkonskoite Formation,” Proc. SPIE 4939, 117–124 (2003).

    Article  Google Scholar 

  73. Y. S. Simakova, “The Role of Living and Nonliving Organic Matter in Volconskoite Formation,” Persp. Astrobiol. NATO Sci. Ser. Life Behav. Sci. 366, 181–186 (2005).

    Google Scholar 

  74. G. R. Taylor, “A Mechanism for Framboid Formation—the Role of Bacteria: A Reply to Dr. S.I. Kalogeropoulos and a Further Contribution,” Miner. Depos., 129–130 (1983).

  75. K. Tazaki, “Biomineralization of Layer Silicates and Hydrated Fe/Mn Oxides in Microbial Mats: An Electron Microscopical Study,” Clays Clay Miner. 45(2), 203–212 (1997).

    Article  Google Scholar 

  76. B. M. Tebo, W. C. Ghiorse, L. G. Van Waasbergen, et al., “Bacterially Mediated Mineral Formation: Insights into Manganese (II) Oxidation from Molecular Genetic and Biochemical Studies,” Rev. Mineral. 35, 225–266 (1997).

    Google Scholar 

  77. B. V. Timofeev, The Earliest Flora of the Baltic Region (Gostoptekhizdat, Moscow, 1959) [in Russian].

    Google Scholar 

  78. B. V. Timofeev, Microphytofossils of the Early Precambrian (Nauka, Leningrad, 1982) [in Russian].

    Google Scholar 

  79. O. S. Vetoshkina, “Bacterial Nature of Siderite and Apatite in Concretions of the Vyatka-Kama Depression,” in 5th Conference on Bacterial Paleontology: Instruments, Methods, and Problems of Astrobiology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002), pp. 23–24 [in Russian].

    Google Scholar 

  80. A. G. Vologdin, “Geological Activity of Microorganisms,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 19–36 (1947).

  81. M. M. Walsh, “Microfossils and Possible Microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa,” Precambr. Res. 54, 271–293 (1992).

    Article  Google Scholar 

  82. M. R. Walter, “Archaean Stromatolites: Evidence of the Earth’s Earliest Benthos,” in Earth’s Earliest Biosphere: Its Origin And Evolution (Princeton Univ. Press, Princeton, 1983), pp. 187–213.

    Google Scholar 

  83. F. Westall, L. Boni, and E. Guerzoni, “The Experimental Silicification of Microorganisms,” Paleontology 38(3), 495–528 (1995).

    Google Scholar 

  84. F. Westall and M. Walsh, “Early Archaean Fossil Bacteria,” in Bacterial Paleontology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002), pp. 84–90 [in Russian].

    Google Scholar 

  85. A. L. Yanshin, “Evolution of Geological Processes and Phosphorites of the Precambrian-Cambrian Boundary Beds of Siberia,” in Geology of Phosphorite Deposits and the Problems of the Phosphorite Formation (Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1982), pp. 13–14 [in Russian].

    Google Scholar 

  86. A. L. Yanshin and M. A. Zharkov, Phosphorus and Potassium in Nature (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  87. J. M. Zachara, J. K. Fredrickson, Shu-Mei Li, et al., “Bacterial Reduction of Crystalline Fe3+ Oxides in Single Phase Suspensions and Surface Materials,” Am. Mineral. 83(11–12: 2), 1426–1443 (1998).

    Google Scholar 

  88. G. A. Zavarzin, “Development of Microbial Communities in the History of the Earth,” in Problems of Pre-Anthropogene Evolution of the Biosphere (Nauka, Moscow, 1993), pp. 212–221 [in Russian].

    Google Scholar 

  89. G. A. Zavarzin, Lectures on the Natural Microbiology (Nauka, Moscow, 2003a) [in Russian].

    Google Scholar 

  90. G. A. Zavarzin, “The Basic Stages of the Evolution of Eukaryotes,” Paleontol. Zh., No. 6, 16–24 (2003b) [Paleontol. J. 37 (6), 576–584 (2003b)].

  91. G. A. Zavarzin and N. N. Kolotilova, Introduction to Natural Microbiology (Kn. Dom Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  92. Chuanlun Zhang, H. Vali, Ch. H. Romanek, et al., “Formation of Single-Domain Magnetite by a Thermophilic Bacterium,” Am. Mineral. 83(11-12: 2), 1409–1418 (1998).

    Google Scholar 

  93. E. A. Zhegallo, A. Yu. Rozanov, G. T. Ushatinskaya, et al., Atlas of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia) (Huntsville, Alabama, 2000).

    Google Scholar 

  94. S. M. Zhmodik, D. K. Belyanin, A. G. Mironov, et al., “Role of Biogenic Factor in Platinum Accumulation by Oceanic Iron-Manganese Concretions,” in 2nd International Conference ‘Biosphere Origin and Evolution’ October 28–November 2, 2007, Loutraki (Loutraki, 2007), pp. 79–80.

  95. S. I. Zhmur, “Cyanobacterial Benthic Community, the Major Producer of Organic Matter of Marine High-Carbon Biolithogenic Substance,” in Problems of Pre-Anthropogene Evolution of the Biosphere (Nauka, Moscow, 1993), pp. 294–303 [in Russian].

    Google Scholar 

  96. S. I. Zhmur, M. B. Burzin, and V. M. Gorlenko, “Cyanobacterial Mats and Formation of Precambrian Carbonate Matter,” Litol. Polezn. Iskop., No. 2, 206–214 (1995).

  97. S. I. Zhmur, V. M. Gorlenko, A. Yu. Rozanov, et al., “Cyanobacterial Benthic System, Producer of Carbonate Matter of Schungites in the Lower Proterozoic of Karelia,” Litol. Polezn. Iskop., No. 2, 122–124 (1993).

  98. S. I. Zhmur, A. Yu. Rozanov, B. A. Sokolov, et al., “Bacterial Mats As the Origin of Matherly Oil Substance,” Dokl. Akad. Nauk 334(6), 742–744 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Astafieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozanov, A.Y., Astafieva, M.M. The evolution of the early precambrian geobiological systems. Paleontol. J. 43, 911–927 (2009). https://doi.org/10.1134/S0031030109080103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030109080103

Key words

Navigation