Skip to main content
Log in

Transcription Factor SAP30 Is Involved in the Activation of NETO2 Gene Expression in Clear Cell Renal Cell Carcinoma

  • Genomics. Trascriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Clear cell renal cell carcinoma (ccRCC) is a common oncourological disease with a high mortality level. The incidence of this type of cancer is constantly increasing, while molecular mechanisms involved in the disease initiation and progression remain far from being fully understood. A problem of the search for novel markers is crucial for improvement of diagnosis and therapy of ccRCC. We have previously found that the disease is characterized by increased expression of the NETO2 gene. In the present study, we showed that isoform 1 (NM_018092.4) makes the main contribution to the upregulation of this gene. Using original CrossHub software, “The Cancer Genome Atlas” (TCGA) project data were analyzed to identify possible mechanisms of NETO2 gene activation in ccRCC. The absence of significant contribution of methylation to the increase of mRNA level of the gene was observed. At the same time, a number of genes encoding transcription factors, which could potentially regulate the expression of NETO2 in ccRCC, were identified. Three such genes (MYCBP, JMY, and SAP30) were selected for the further analysis of their mRNA levels in a set of ccRCC samples with quantitative PCR. We showed a significant increase in mRNA level of one of the examined genes, SAP30, and revealed its positive correlation with NETO2 gene expression. Thus, upregulation of NETO2 gene is first stipulated by the isoform 1 (NM_018092.4), and the probable mechanism of its activation is associated with the increased expression of SAP30 transcription factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

qPCR:

quantitative PCR

ccRCC:

clear cell renal cell carcinoma

CUB:

complement C1r/C1s, Uegf, Bmp1

KAR:

kainate receptor

LDLa:

low-density lipoprotein, class A

NMDA:

ionotrope glutamate receptor

RNA-seq:

RNA sequencing

References

  1. Siegel R.L., Miller K.D., Jemal A. 2015. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29.

    Article  PubMed  Google Scholar 

  2. Lopez-Beltran A., Carrasco J.C., Cheng L., et al. 2009. 2009 update on the classification of renal epithelial tumors in adults. Int. J. Urol. 16, 432–443.

    Article  PubMed  Google Scholar 

  3. Cheville J.C., Lohse C.M., Zincke H., et al. 2003. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am. J. Surg. Pathol. 27, 612–624.

    Article  PubMed  Google Scholar 

  4. Moch H., Gasser T., Amin M.B., et al. 2000. Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: A Swiss experience with 588 tumors. Cancer. 89, 604–614.

    Article  PubMed  CAS  Google Scholar 

  5. Chen F., Liu X., Cheng Q., et al. 2016. RUNX3 regulates renal cell carcinoma metastasis via targeting miR-6780a-5p/E-cadherin/EMT signaling axis. Oncotarget. 8, 1–15.

    Google Scholar 

  6. Loginov V.I., Dmitriev A.A., Senchenko V.N., et al. 2015. Tumor suppressor function of the SEMA3B gene in human lung and renal cancers. PLoS One. 10, e0123369.

    Article  CAS  Google Scholar 

  7. Cherkasova E., Malinzak E., Rao S., et al. 2011. Inactivation of the von Hippel–Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene. 30, 4697–4706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dmitriev A.A., Rudenko E.E., Kudryavtseva A.V., et al. 2014. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed. Res. Int. 2014, 735292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Haraldson K., Kashuba V.I., Dmitriev A.A., et al. 2012. LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibits cell growth and replication. Biochimie. 94, 1151–1517.

    Article  PubMed  CAS  Google Scholar 

  10. Kudriavtseva A.V., Anedchenko E.A., Oparina N.Yu., et al. 2009. Expression of FTL and FTH genes encoding ferritin subunits in lung and renal carcinomas. Mol. Biol. (Moscow). 43 (6), 972–981.

    Article  CAS  Google Scholar 

  11. Oparina N.Y., Snezhkina A.V., Sadritdinova A.F., et al. 2013. Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Russ. J. Genet. 49 (7), 707–716.

    Article  CAS  Google Scholar 

  12. Oparina N.Y., Sadritdinova A.F., Snezhkina A.V., et al. 2012. Increase in gene expression is a potential molecular genetic marker in renal and lung cancers. Russ. J. Genet. 48 (5), 506–512.

    Article  CAS  Google Scholar 

  13. Stohr H., Berger C., Frohlich S., Weber B.H. 2002. A novel gene encoding a putative transmembrane protein with two extracellular CUB domains and a low-density lipoprotein class A module: Isolation of alternatively spliced isoforms in retina and brain. Gene. 286, 223–231.

    Article  PubMed  CAS  Google Scholar 

  14. Copits B.A., Robbins J.S., Frausto S., Swanson G.T. 2011. Synaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins. J. Neurosci. 31, 7334–7340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Michishita M., Ikeda T., Nakashiba T., et al. 2003. A novel gene, Btcl1, encoding CUB and LDLa domains is expressed in restricted areas of mouse brain. Biochem. Biophys. Res. Commun. 306, 680–686.

    Article  PubMed  CAS  Google Scholar 

  16. Krasnov G.S., Dmitriev A.A., Melnikova N.V., et al. 2016. CrossHub: A tool for multi-way analysis of The Cancer Genome Atlas (TCGA) in the context of gene expression regulation mechanisms. Nucleic Acids Res. 44, e62.

    Article  CAS  Google Scholar 

  17. Krasnov G.S., Oparina N.Y., Dmitriev A.A., et al. 2011. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol. Biol. (Moscow). 45 (2), 211–220.

    Article  CAS  Google Scholar 

  18. Fedorova M.S., Kudryavtseva A.V., Lakunina V.A., et al. 2015. Downregulation of OGDHL expression is associated with promoter hypermethylation in colorectal cancer. Mol. Biol. (Moscow). 49 (4), 608–617.

    Article  CAS  Google Scholar 

  19. Snezhkina A.V., Krasnov G.S., Lipatova A.V., et al. 2016. The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPbeta rather than enterotoxigenic Bacteroides fragilis infection. Oxid. Med. Cell. Longevity. 2016, 2353–2360.

    Article  CAS  Google Scholar 

  20. Senchenko V.N., Krasnov G.S., Dmitriev A.A., et al. 2011. Differential expression of CHL1 gene during development of major human cancers. PLoS One. 6, e15612.

    Article  CAS  Google Scholar 

  21. Melnikova N.V., Dmitriev A.A., Belenikin M.S., et al. 2016. Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front. Plant Sci. 7, 399.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dmitriev A.A., Kudryavtseva A.V., Krasnov G.S., et al. 2016. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol. 16, 237.

    Article  PubMed  CAS  Google Scholar 

  23. Calicchio M.L., Collins T., Kozakewich H.P. 2009. Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genomewide transcriptional profiling. Am. J. Pathol. 174, 1638–1649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kadara H., Fujimoto J., Yoo S.Y., et al. 2014. Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer. J. Natl. Cancer Inst. 106, dju004.

  25. Villa E., Critelli R., Lei B., et al. 2016. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut. 65, 861–869.

    PubMed  CAS  Google Scholar 

  26. Hu L., Chen H.Y., Cai J., et al. 2015. Upregulation of NETO2 expression correlates with tumor progression and poor prognosis in colorectal carcinoma. BMC Cancer. 15, 1006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Clower C.V., Chatterjee D., Wang Z., et al. 2010. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci. U. S. A. 107, 1894–1899.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bonomi S., Gallo S., Catillo M., et al. 2013. Oncogenic alternative splicing switches: Role in cancer progression and prospects for therapy. Int. J. Cell. Biol. 2013, 962038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang G.S., Cooper T.A. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761.

    Article  PubMed  CAS  Google Scholar 

  30. Karni R., de Stanchina E., Lowe S.W., et al. 2007. The gene encoding the splicing factor SF2/ASF is a protooncogene. Nat. Struct. Mol. Biol. 14, 185–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Srebrow A., Kornblihtt A.R. 2006. The connection between splicing and cancer. J. Cell. Sci. 119, 2635–2641.

    Article  PubMed  CAS  Google Scholar 

  32. Mucaki E.J., Ainsworth P., Rogan P.K. 2011. Comprehensive prediction of mRNA splicing effects of BRCA1 and BRCA2 variants. Hum. Mutat. 32, 735–742.

    Article  PubMed  CAS  Google Scholar 

  33. Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., et al. 2016. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 7, 44879–44905.

    PubMed  PubMed Central  Google Scholar 

  34. Grzenda A., Lomberk G., Zhang J.S., Urrutia R. 2009. Sin3: Master scaffold and transcriptional corepressor. Biochim. Biophys. Acta. 1789, 443–450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang Y., Iratni R., Erdjument-Bromage H., et al. 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 89, 357–364.

    Article  PubMed  CAS  Google Scholar 

  36. Hassig C.A., Fleischer T.C., Billin A.N., et al. 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 89, 341–347.

    Article  PubMed  CAS  Google Scholar 

  37. Bansal N., Kadamb R., Mittal S., et al. 2011. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One. 6, e26156.

    Article  CAS  Google Scholar 

  38. Binda O., Roy J.S., Branton P.E. 2006. RBP1 family proteins exhibit SUMOylation-dependent transcriptional repression and induce cell growth inhibition reminiscent of senescence. Mol. Cell. Biol. 26, 1917–1931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Silverstein R.A., Ekwall K. 2005. Sin3: A flexible regulator of global gene expression and genome stability. Curr. Genet. 47, 1–17.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y., Sun Z.W., Iratni R., et al. 1998. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell. 1, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  41. Lai A., Kennedy B.K., Barbie D.A., et al. 2001. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol. Cell. Biol. 21, 2918–2932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Suryadinata R., Sadowski M., Steel R., Sarcevic B. 2011. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex. J. Biol. Chem. 286, 5108–5118.

    Article  PubMed  CAS  Google Scholar 

  43. Hsieh J.J., Zhou S., Chen L., Young D.B., Hayward S.D. 1999. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl. Acad. Sci. U. S. A. 96, 23–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Huang N.E., Lin C.H., Lin Y.S., Yu W.C. 2003. Modulation of YY1 activity by SAP30. Biochem. Biophys. Res. Commun. 306, 267–275.

    Article  PubMed  CAS  Google Scholar 

  45. Sichtig N., Korfer N., Steger G. 2007. Papillomavirus binding factor binds to SAP30 and represses transcription via recruitment of the HDAC1 co-repressor complex. Arch. Biochem. Biophys. 467, 67–75.

    Article  PubMed  CAS  Google Scholar 

  46. De Nadal E., Zapater M., Alepuz P.M., et al. 2004. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature. 427, 370–374.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kudryavtseva.

Additional information

Original Russian Text © A.V. Snezhkina, K.M. Nyushko, A.R. Zaretsky, D.A. Shagin, A.F. Sadritdinova, M.S. Fedorova, Z.G. Guvatova, I.S. Abramov, E.A. Pudova, B.Y. Alekseev, A.A. Dmitriev, A.V. Kudryavtseva, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 451–459.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snezhkina, A.V., Nyushko, K.M., Zaretsky, A.R. et al. Transcription Factor SAP30 Is Involved in the Activation of NETO2 Gene Expression in Clear Cell Renal Cell Carcinoma. Mol Biol 52, 385–392 (2018). https://doi.org/10.1134/S0026893318020152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318020152

Keywords

Navigation