Skip to main content
Log in

Conformational dynamics of the tetrameric hemoglobin molecule as revealed by hydrogen exchange: I. Effects of pH, temperature, and ligand binding

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in different forms of human hemoglobin (Hb) at pH 5–10 and temperatures of 10–63°C. The pH dependence of the H-D exchange rate fits the EX2 mechanism. At 10–30°C, there are two pH-dependent conformers of liganded Hb forms, the fluctuation probability being lower for the alkaline conformer. The differences between the conformers disappear at 40°C, where a third conformer, with a higher probability of local fluctuations, appears. Deoxyhemoglobin has no pH-dependent conformers in the pH range 6–9 at 20°C, and the probability of local fluctuations is considerably decreased compared to the acid conformer of liganded Hb. The destabilization of the liganded Hb structure by decreasing the pH to 5.0 at 20°C or increasing the temperature to 50–60°C at pH 7.1 enhances global fluctuations of the native structure ensuring the H-D exchange of slowly exchanging NH atoms. The mechanisms of local and high-temperature global fluctuations, as well as the possible similarity between the two pH-dependent conformers of liganded Hb and its functional R and R2 states revealed by X-ray analysis and NMR spectroscopy, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sinha N., Smith-Gill S.J. 2002. Protein structure to function via dynamics. Prot. Pept. Lett. 9, 367–377.

    CAS  Google Scholar 

  2. Abaturov L.V. 1983. Thermal motion of protein: Smallscale fluctuations and conformational substates. Mol. Biol. 17, 693–704.

    Google Scholar 

  3. Abaturov L.V., Lebedev Yu.O., Nosova N.G., Shlyapnikov S.V. 1999. Dynamic structure of crystalline and dissolved ribonuclease A: Two main types of intramolecular motility. Mol. Biol. 33, 630–640.

    CAS  Google Scholar 

  4. Abaturov L.V., Lebedev Yu.O., Nosova N.G., Shlyapnikov S.V. 1999. Crystallographic temperature B factors and intramolecular motility of ribonuclease A. Mol. Biol. 33, 814–824.

    CAS  Google Scholar 

  5. Harata K., Kanai R. 2002. Crystallographic dissection of the thermal motion of protein-sugar complex. Proteins. 48, 53–62.

    Article  PubMed  CAS  Google Scholar 

  6. Bruschehweiler R. 2003. New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins. Curr. Opin. Struct. Biol. 13, 175–183.

    Google Scholar 

  7. Volkman B.F., Alam S.L., Satterlee J.D., Markley J.L. 1998. Solution structure and backbone dynamics of component IV Glycera dibranchiata monomeric hemoglobin-CO. Biochemistry. 37, 10906–10919.

    Article  PubMed  CAS  Google Scholar 

  8. Grivtsov A.G., Malenkov G.G., Abaturov L.V. 1983. Numerical modeling of the molecular dynamics of proteins. Mol. Biol. 17, 587–615.

    CAS  Google Scholar 

  9. Baldwin J., Chothia C. 1979. Hemoglobin: The structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 129, 175–220.

    Article  PubMed  CAS  Google Scholar 

  10. Case D.A., Karplus M.J. 1979. Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132, 343–368.

    Article  PubMed  CAS  Google Scholar 

  11. Arrington C.B., Robertson A.D. 2000. Kinetics and thermodynamics of conformational equilibria in native proteins by hydrogen exchange. Meth. Enzymol. 323, 104–124.

    PubMed  CAS  Google Scholar 

  12. Cavagnero S., Theriault Y., Narula S.S., Dyson H.J., Wright P.E. 2000. Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra. Protein Sci. 9, 186–193.

    PubMed  CAS  Google Scholar 

  13. Willumsen L. 1971. Hydrogen isotope exchange in the study of protein conformation. Compt. Rend. Trav. Lab. Carlsberg. 38, 223–295.

    CAS  Google Scholar 

  14. Abaturov L.V. 1976. Hydrogen exchange in proteins. Usp. Nauki Tekh. Ser. Mol. Biol. Moscow: VINITI. 8, 7–126.

    Google Scholar 

  15. Barksdale A.D, Rosenberg A. 1982. Acquisition and interpretation of hydrogen exchange data from peptides, polymers, and proteins. Meth. Biochem. Anal. 28, 1–113.

    CAS  Google Scholar 

  16. Abaturov L.V., Jinoria K.Sh., Varshavsky Ya.M., Yakobashvily N.N. 1977. Effect of ligand and heme on conformational stability (intramolecular conformational motility) of hemoglobin as revealed by hydrogen exchange. FEBS Lett. 77, 103–106.

    Article  PubMed  CAS  Google Scholar 

  17. Abaturov L.V., Lebedev Yu.O., Nosova N.G. 1983. Dynamic structure of globular proteins: Conformational rigidity and fluctuational motility. Mol. Biol. 17, 543–567.

    CAS  Google Scholar 

  18. Abaturov L.V., Yakobashvily N.N., Jinoria K.Sh., Molchanova T.P., Varshavsky Ya.M. 1976. Effect of intersubunit contact on intramolecular motility (conformational stability) of hemoglobin as revealed by hydrogen exchange. FEBS Lett. 70, 127–130.

    Article  PubMed  CAS  Google Scholar 

  19. Englander J.J., Mar C.D., Li W., Englander S.W., Kim J.S., Stranz D.D., Hamuro Y., Woods V.L., Jr. 2003. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. USA. 100, 7057–7062.

    Article  PubMed  CAS  Google Scholar 

  20. Huyghues-Despointes B.M.P., Scholtz J.M., Pace C.N. 1999. Protein conformational stabilities can be determined from hydrogen exchange rates. Nature Struct. Biol. 6, 910–912.

    PubMed  CAS  Google Scholar 

  21. Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Brice M.D., Rodergs J.R., Kennard O., Shimanouchi T., Tasumi M. 1977. The protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    PubMed  CAS  Google Scholar 

  22. Hvidt A., Nielsen S.O. 1966. Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287–386.

    PubMed  CAS  Google Scholar 

  23. Bai Y., Milne J.S., Mayne L., Englander S.W. 1993. Primary structure effects on peptide group hydrogen exchange. Proteins. 17, 75–86.

    Article  PubMed  CAS  Google Scholar 

  24. Hedlund B.E., Hallaway P.E., Hallaway B.E., Benson E.S., Rosenberg A. 1978. Hydrogen exchange kinetics of human hemoglobins. The pH-dependence of solvent accessibility in cyanomet-, oxy-, and deoxyhemoglobin. J. Biol. Chem. 253, 3702–3707.

    PubMed  CAS  Google Scholar 

  25. Müller R.G., Schmid K. 1983. Enthalpy of denaturation for human hemoglobin in the oxygenated and deoxygenated state. Thermochim. Acta. 69, 115–125.

    Article  Google Scholar 

  26. Zhang Z., Smith D.L. 1996. Thermal-induced unfolding domains in aldolase identified by amide hydrogen exchange and mass spectrometry. Protein Sci. 5, 1282–1289.

    PubMed  CAS  Google Scholar 

  27. Hiller R., Zhou Z.H., Adams M.W.W., Englander S.W. 1997. Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200°C. Proc. Natl. Acad. Sci. USA. 94, 11329–11332.

    Article  PubMed  CAS  Google Scholar 

  28. Bai Y., Milne J.S., Mayne L., Englander S.W. 1994. Protein stability parameters measured by hydrogen exchange. Proteins. 20, 4–14.

    Article  PubMed  CAS  Google Scholar 

  29. Abaturov L.V., Lebedev Yu.O., Molchanova T.P., Nosova N.G., Faizullin D.A. 1990. Conformational rigidity and fluctuational motility of globular proteins: Water as a structure stabilizer and plasticizer. In: Ravnovesnaya dinamika struktury biopolimerov (Equilibrium Dynamics of Protein Structure). Eds. Burshtein E.A., Abaturov L.V. Pushchino: TsNTI, pp. 49–77.

    Google Scholar 

  30. Olsen K.W. 1994. Thermal denaturation procedure for hemoglobin. Meth. Enzymol. 231, 514–524.

    PubMed  CAS  Google Scholar 

  31. Abaturov L.V., Ushakova M.M., Molchanova T.P., Yakobashvily N.N., Zhdanova K.I., Jinoria K.Sh. 1975. Comparative studies on the conformational stability and intramolecular motility of hemoglobin and its constituent parts. VII Int. Symp. Struct. und Function der Erythrozyten. Berlin: Academia-Verlag, 129–133.

    Google Scholar 

  32. Duan J., Nilsson L. 2005. Thermal unfolding simulation of a multimeric protein-transition state and unfolding pathways. Proteins. 59, 170–182.

    Article  PubMed  CAS  Google Scholar 

  33. Nakanishi M., Tsuboi M., Ikegami A. 1974. Fluctuation of the myoglobin structure. Bull. Chem. Soc. Japan. 47, 293–298.

    CAS  Google Scholar 

  34. Williams D.C., Jr., Benjamin D.C., Poljak R.J., Rule G.S. 1996. Global changes in amide hydrogen exchange rates for a protein antigen in complex with three different antibodies. J. Mol. Biol. 257, 866–876.

    Article  PubMed  CAS  Google Scholar 

  35. Arrington C.B., Robertson A.D. 2000. Microsecond to minute dynamics revealed by EX1-type hydrogen exchange at nearly every backbone hydrogen bond in a native protein. J. Mol. Biol. 296, 1307–1317.

    Article  PubMed  CAS  Google Scholar 

  36. Liem R.K.H., Calhoun D.B., Englander J.J., Englander S.W. 1980. A high energy structure change in hemoglobin studied by difference hydrogen exchange. J. Biol. Chem. 25, 10687–10694.

    Google Scholar 

  37. Malin E.L., Englander S.W. 1980. The slowest allosterically responsive hydrogens in hemoglobin. Completion of the hydrogen survey. J. Biol. Chem. 25, 10695–10701.

    Google Scholar 

  38. Mueser T.C., Rogers P.H., Arnone A. 2000. Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry. 39, 15353–15364.

    Article  PubMed  CAS  Google Scholar 

  39. Lukin J.A., Kontaxis G., Simplaceanu V., Yuan Y., Bax A., Ho C. 2003. Quaternary structure of hemoglobin in solution. Proc. Natl. Acad. Sci. USA. 100, 517–520.

    Article  PubMed  CAS  Google Scholar 

  40. Silva M.M., Rogers P.H., Arnone A. 1992. A third quaternary structure of human hemoglobin A at 1.7-Å resolution. J. Biol. Chem. 267, 17248–17256.

    PubMed  CAS  Google Scholar 

  41. Briehl R.W., Hobbs J.F. 1970. Ultraviolet difference spectra in human hemoglobin: 1. Difference spectra in hemoglobin A and their relation to the function of hemoglobin. J. Biol. Chem. 245, 544–554.

    PubMed  CAS  Google Scholar 

  42. Sawicki C.A., Gibson Q.H. 1976. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J. Biol. Chem. 251, 1533–1542.

    PubMed  CAS  Google Scholar 

  43. McDonald M.J., Noble R.W. 1972. The effect of pH on the rates of ligand replacement reactions of human adult and fetal hemoglobins and their subunits. J. Biol. Chem. 247, 4282–4287.

    PubMed  CAS  Google Scholar 

  44. Tian W.D., Sage J.T., Champion P.M. 1993. Investigations of ligand association and rates in the “open” and “closed” states of myoglobin. J. Mol. Biol. 233, 155–166.

    Article  PubMed  CAS  Google Scholar 

  45. Vendruscolo M., Paci J.T., Dobson C.M., Karplus M. 2003. Rare fluctuations of native proteins sampled by equilibrium hydrogen exchange. J. Am. Chem. Soc. 125, 15686–15687.

    Article  PubMed  CAS  Google Scholar 

  46. Chang C.-K., Simplaceanu V., Ho C. 2002. Effects of amino acid substitutions at β131 on the structure and properties of hemoglobin: Evidence for communication between α1β1-and α1β2-subunit interfaces. Biochemistry. 41, 5644–5655.

    PubMed  CAS  Google Scholar 

  47. Yuan Y., Simplaceanu V., Lukin J.A., Ho C. 2002. NMR investigation of the dynamics of tryptophan side-chains in hemoglobins. J. Mol. Biol. 321, 863–878.

    Article  PubMed  CAS  Google Scholar 

  48. Eaton W.A., Henry E.R., Hofrichter J., Mozzarelly A. 1999. Is cooperative oxygen binding by hemoglobin really understood. Nature Struct. Biol. 6, 351–358.

    Article  PubMed  CAS  Google Scholar 

  49. Rujan I.N., Russu I.M. 2002. Allosteric effects of chloride ions at the intradimeric α1β1 and α1β2 interfaces of human hemoglobin. Proteins. 49, 413–419.

    Article  PubMed  CAS  Google Scholar 

  50. Mihailescu M.-R., Fronticelli C., Russu I.M. 2001. Allosteric free energy changes at the α1β2 interface of human hemoglobin probes by proton exchange of Trpβ37. Proteins. 44, 73–78.

    Article  PubMed  CAS  Google Scholar 

  51. Connelly G.P., McIntosh L.P. 1998. Characterization of a buried neutral histidine in Bacillus circulans xynalase: Internal dynamics and interaction with a bound water molecule. Biochemistry. 37, 1810–1818.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.V. Abaturov, N.G. Nosova, S.V. Shlyapnikov, D.A. Faizullin, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 326–340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abaturov, L.V., Nosova, N.G., Shlyapnikov, S.V. et al. Conformational dynamics of the tetrameric hemoglobin molecule as revealed by hydrogen exchange: I. Effects of pH, temperature, and ligand binding. Mol Biol 40, 284–297 (2006). https://doi.org/10.1134/S0026893306020154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306020154

Key words

Navigation