Skip to main content
Log in

Capsular and extracellular polysaccharides of the diazotrophic rhizobacterium Herbaspirillum seropedicae Z78

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The diazotrophic endophyte Herbaspirillum seropedicae Z78 was shown to possess a capsule containing two high-molecular-weight glycolipids, one of which was of a lipopolysaccharide nature. These glycolipids differed considerably in the fatty acid composition of their lipid components. The polysaccharide moiety of these glycans was composed of glucose, galactose, glucosamine, galactosamine, and a noncarbohydrate component, butanetetraol. In the culture liquid of H. seropedicae Z78, an extracellular polysaccharide and an extracellular form of lipopolysaccharide were revealed. Fatty acid composition of the extracellular lipopolysaccharide differed from that of the capsular glycoconjugates; the polysaccharide moiety of exoglycans contained only neutral sugars (mannose, glucose, and galactose) and a tetraatomic alcohol, butanetetraol. It is assumed that structural diversity of polysaccharide-containing polymers at the surface of H. seropedicae Z78 cells is conditioned by their different roles in plant colonization and formation of efficient symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldani, J.I., Baldani, V.L.D., Seldin, L., and Dobereiner, J., Characterization of Herbaspirillum seropedicae gen. nov. sp. nov.: A Root-Associated Nitrogen-Fixing Bacterium, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 86–93.

    Article  CAS  Google Scholar 

  2. Baldani, J.I. and Baldani, V.L.D., History of Biological Nitrogen-Fixation Research in Graminaceous Plants: Special Emphasis on the Brazilian Experience, Ann. Brasil Acad. Sci., 2005, vol. 77, no. 3, pp. 547–579.

    Google Scholar 

  3. Ovodov, Yu.S., Bacterial Capsular Antigens. Structural Patterns of Capsular Antigens, Biochemisry (Moscow), 2006, vol. 71, no. 9, pp. 937–954.

    Article  CAS  Google Scholar 

  4. Konnova, S.A., Makarov, O.E., Skvortsov, I.M., and Ignatov, V.V., Isolation, Fractionation and Some Properties of Polysaccharides Produced in a Bound Form by Azospirillum brasilense and Their Possible Involvement in Azospirillum-Wheat Root Interaction, FEMS Microbiol. Lett., 1994, vol. 118, no. 2, pp. 93–99.

    Article  CAS  Google Scholar 

  5. Whitfield, C. and Roberts, I.S., Structure, Assembly and Regulation of Expression of Capsules in Escherichia coli, Mol. Microbiol., 1999, vol. 31, pp. 1307–1319.

    Article  PubMed  CAS  Google Scholar 

  6. Smol’kina, O.N., Kachala, V.V., Fedonenko, Yu.P., Burygin, G.L., Zdorovenko, E.L., Matora, L.Yu., Konnova, S.A., and Ignatov, V.V., Capsular Polysaccharide of the Bacterium Azospirillum lipoferum Sp59b: Structure and Antigenic Specificity, Biochemisry (Moscow), 2010, vol. 75, no. 5, pp. 606–613.

    Article  Google Scholar 

  7. Zdorovenko, G.M., Extracellular Lipopolysaccharides of Gram-Negative Bacteria, Mikrobiol. Zh., 1988, vol. 50, no. 4, pp. 98–107.

    PubMed  CAS  Google Scholar 

  8. Laus, M.C., Brussel, A.A.N., and Kijne, J.W., Role of Cellulose Fibrils and Exopolysaccharides of Rhizobium leguminosarum in Attachment to and Infection of Vicia sativa Root Hairs, Mol. Plant Microbe Interact., 2005, vol. 18, pp. 533–538.

    Article  PubMed  CAS  Google Scholar 

  9. Matamoros, M.A., Dalton, D.A., Ramos, J., Clemente, M.R., Rubio, M.C., and Becana, M., Biochemistry and Molecular Biology of Antioxidants in the Rhizobia-Legume Symbiosis, Plant Physiol., 2003, vol. 133, pp. 499–509.

    Article  PubMed  CAS  Google Scholar 

  10. D’Haeze, W. and Holsters, M., Surface Polysaccharides Enable Bacteria to Evade Plant Immunity, Trends Microbiol., 2004, vol. 12, pp. 555–561.

    Article  PubMed  Google Scholar 

  11. Skorupska, A., Janczarek, M., Marczak, M., Mazur, A., and Król, J., Rhizobial Exopolysaccharides: Genetic Control and Symbiotic Functions, Microbial Cell Factories, 2006, vol. 5, no. 7, pp. 1–19.

    Google Scholar 

  12. Mayer, H., Tharanathan, R.N., and Weckesser, J., Analysis of Lipopolysaccharides of Gram-Negative Bacteria, Meth. Microbiol., 1985, vol. 18, pp. 157–207.

    Article  CAS  Google Scholar 

  13. Sawardecker, J.S., Sloneker, J.H., and Jeans, A., Quantitative Determination of Monosaccharides as Their Alditol Acetates by Gas Liquid Chromatography, Anal. Chem., 1965, vol. 37, pp. 1602–1603.

    Article  Google Scholar 

  14. Hitchcock, P.J. and Brown, T.M., Morphological Heterogeneity among Salmonella Lipopolysaccharide Chemotypes in Silver-Stained Polyacrylamide Gels, J. Bacteriol., 1983, vol. 154, pp. 269–277.

    PubMed  CAS  Google Scholar 

  15. Tsai, C.M. and Frasch, C.E., A Sensitive Silver Stain for Delecting Lipopolysaccharides in Polyacrylamide Gels, Anal. Biochem., 1982, vol. 119, pp. 115–119.

    Article  PubMed  CAS  Google Scholar 

  16. Carlson, R.W. and Yadav, M., Isolation and Partial Characterization of the Extracellular Polysaccharides and Lipopolysaccharides from Fast-Growing Rhizobium japonicum USDA 205 and Its Nod-Mutant, HC205, Which Lacks the Symbiotic Plasmid, Appl. Environ. Microbiol., 1985, vol. 50, pp. 1219–1224.

    PubMed  CAS  Google Scholar 

  17. Maitra, S.K., Nachum, R., and Pearson, F.C., Establishment of Beta-Hydroxy Fatty Acids as Chemical Marker Molecules for Bacterial Endotoxin by Gas Chromatography-Mass Spectrometry, Appl. Environ. Microbiol., 1986, vol. 52, pp. 510–514.

    PubMed  CAS  Google Scholar 

  18. Iida, T., Haishima, Y., Tanaka, A., Nishiyama, K., Saito, S., and Tanamoto, K., Chemical Structure of Lipid A Isolated from Comamonas testosteroni Lipopolysaccharide, Eur. J. Biochem., 1996, vol. 237, no. 5, pp. 468–475.

    Article  PubMed  CAS  Google Scholar 

  19. Krauss, J.H., Seydel, U., Weckesser, J., and Mayer, H., Structural Analysis of the Nontoxic Lipid A of Rhodobacter capsulatus 37b4, Eur. J. Biochem., 1989, vol. 180, no. 3, pp. 519–526.

    Article  PubMed  CAS  Google Scholar 

  20. Tanamoto, K., Kato, H., Haishima, Y., and Azumi, S., Biological Properties of Lipid A Isolated from Flavobacterium meningosepticum, Clin. Diagn. Lab. Immunol., 2001, vol. 8, pp. 522–527.

    PubMed  CAS  Google Scholar 

  21. Weintraub, A., Zahringer, U., Wollenweber, H.W., Seydel, U., and Rietschel, E.T., Structural Characterization of the Lipid A Component of Bacteroides fragilis Strain NCTC 9343, Eur. J. Biochem., 1989, vol. 183, pp. 425–431.

    Article  PubMed  CAS  Google Scholar 

  22. Kozulin, V.V., Mikerov, A.N., Makorov, O.E., Skvortsov, I.M., and Ignatov, V.V., Polysaccharide Complexes, Lipopolysaccharides, and O-Specific Polysaccharides of Xanthomonas campestris pv. campestris 8183a, Microbiology, 1997, vol. 66, no. 2, pp. 157–161.

    CAS  Google Scholar 

  23. Shishonkova, N.S., Smol’kina, O.N., Chernyshova, M.P., and Ignatov, V.V., Isolation and Characterization of the Lipopolysaccharide of Herbaspirillum seropedicae Z78, Proc. Saratov. Univ. Ser. Chem. Biol. Ecol., 2011, no. 2 (in press).

  24. Serrato, R.V., Sassaki, G.L., Cruz, L.M., Carlson, R.W., Muszynski, A., Monteiro, R.A., Pedrosa, F.O., Souza, E.M., and Iacomini, M., Chemical Composition of Lipopolysaccharides Isolated from Various Endophytic Nitrogen-Fixing Bacteria of the Genus Herbaspirillum, Can. J. Microbiol., 2010, vol. 56, pp. 342–347.

    Article  PubMed  CAS  Google Scholar 

  25. Zych, K., Toukach, F.V., Arbatsky, P.N., Kolodziejska, K., Senchenkova, S.N., Shashkov, S.A., Knirel, Y.A., and Sidorczyk, Z., Structure of the O-Specific Polysaccharide of Proteus mirabilis D52 and Typing of This Strain to Proteus Serogroup 003, Eur. J. Biochem., 2001, vol. 268, pp. 4346–4351.

    Article  PubMed  CAS  Google Scholar 

  26. Silipo, A., Erbs, G., Shinya, T., Dow, J.M., Parrilli, M., Lanzetta, R., Shibuya, N., Newman, M.-A., and Molinaro, A., Glycoconjugates as Elicitors Or Suppressors of Plant Innate Immunity, Glycobiology, 2010, vol. 20, no. 4, pp. 406–419.

    Article  PubMed  CAS  Google Scholar 

  27. Aslam, S.N., Newman, M.-A., Erbs, G., Morrissey, K.L., Chinchilla, D., Boller, T., Jensen, T.T., Castro, C., Ierano, T., Molinaro, A., Jackson, R.W., Knight, M.R., and Cooper, R.M., Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation, Curr. Biol., 2008, vol. 18, pp. 1078–1083.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Smol’kina.

Additional information

Original Russian Text © O.N. Smol’kina, N.S. Shishonkova, N.A. Yurasov, V.V. Ignatov, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 3, pp. 345–352.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smol’kina, O.N., Shishonkova, N.S., Yurasov, N.A. et al. Capsular and extracellular polysaccharides of the diazotrophic rhizobacterium Herbaspirillum seropedicae Z78. Microbiology 81, 317–323 (2012). https://doi.org/10.1134/S0026261712030113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712030113

Keywords

Navigation