Skip to main content
Log in

Functional diversity of an aboriginal microbial community oxidizing the ore with high antimony content at 46–47°C

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A procedure for rapid (7–10 days) obtaining of enrichment cultures of aboriginal thermoacidophilic microbial communities from ores with high antimony content (Sb 26%) was developed. This technique allows for rapid alkalization of the medium due to the abundance of calcites, as well as the low antioxidant status of the initial cells. The ore concentration in the medium was gradually increased to 10 g/l. In the course of this process, selection of enrichment cultures containing microbial strains preferentially oxidizing ore, S0, or Fe2+ is carried out. A combination of three enrichment cultures allowed us to rapidly (in six days) adapt the aboriginal strains to high-density pulp (16%) in the reactor at 46°C, as well as to carry out a three-stage semi-continuous cultivation in the reactors at D = 0.0042 h−1 and to isolate from each reactor the pure cultures of predominant bacteria involved in the process of bioleaching/oxidation of the mixture of antimonite-containing ores and sulfide flotation concentrates. It was demonstrated that, in the microbial community of reactor I, strain Sb-K exhibiting high rates of growth and initial substrate oxidation was predominant. In reactor II, strain Sb-F prevailed, showing a high substrate specificity with respect to Fe2+. A sulfur-oxidizing strain involved in active oxidation of reduced inorganic sulfur compounds (RISCs) was predominant in reactor III. Nevertheless, together, all three strains showed synergism and were able to oxidize S0, Fe2+, and sulfide minerals (including antimonite Sb2S3 in the presence of 0.02% yeast extract) in reactors. The strains differed from each other in their DNA restriction profiles, growth rates, and the rates of inorganic substrate oxidation under mixotrophic conditions. The phenotypic properties of all the studied isolates have a certain similarity to those of sulfobacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rawlings, D.E. and Johnson, D.B., The Microbiology of Biomining: Development and Optimization of Mineral-Oxidizing Microbial Consortia, Microbiology, 2007, vol. 153, pp. 315–324.

    Article  CAS  PubMed  Google Scholar 

  2. Karavaiko, G.I., Dubinina, G.A., and Kondrat’eva, T.F., Lithotrophic Microorganisms of the Oxidative Cycles of Sulfur and Iron, Mikrobiologiya, 2006, vol. 75, no. 5, pp. 593–629 [Microbiology (Engl. Transl.), vol. 75, no. 5, pp. 512–545].

    CAS  Google Scholar 

  3. Tsaplina, I.A., Bogdanova, T.I., Kondrat’eva, T.F., Melamud, V.S., Lysenko, A.M., and Karavaiko, G.I., Genotypic and Phenotypic Polymorphism of Environmental Strains of the Moderately Thermophilic Bacterium Sulfobacillus sibiricus, Mikrobiologiya, 2008, vol. 77, no. 2, pp. 178–187 [Microbiology (Engl. Transl.), vol. 77, no. 2, pp. 151–158].

    CAS  Google Scholar 

  4. Kondrat’eva, T.F., Tsaplina, I.A., Melamud, V.S., Zhuravleva, A.E., Murav’ev, M.I., Pivovarova, T.A., Tupikina, O.V., and Fomchenko, N.V., Obzor. Moderately Thermophilic Bacteria of the Genus Sulfobacillus, Sbornik trudov Uchrezhdeniya Rossiiskoi akademii nauk Instituta mikrobiologii im. S.N. Vinogradskogo RAN (Proc. Winogradsky Institute of Microbiology), 2010 (in press).

  5. Krasil’nikova, E.N., Tsaplina, I.A., Zakharchuk, L.M., and Bogdanova, T.I., Effects of Exogenous Factors on Enzymes of Carbon Metabolism in Thermoacidophilic Bacteria of the Genus Sulfobacillus, Prikl. Biokhim. Mikrobiol., 2001, vol. 37, no. 4, pp. 418–423 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 37, no. 4, pp. 358–62].

    PubMed  Google Scholar 

  6. Bridge, T.A.M. and Johnson, D.B., Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic IronOxidizing Bacteria, Appl. Environ. Microbiol., 1998, vol. 64, pp. 2181–2186.

    CAS  PubMed  Google Scholar 

  7. Tsaplina, I.A., Zhuravleva, A.E., Egorova, M.A., Bogdanova, T.I., Krasil’nikova, E.N., Zakharchuk, L.M., and Kondrat’eva, T.F., Response to Oxygen Limitation in Bacteria of the Genus Sulfobacillus, Mikrobiologiya, 2010, vol. 79, no. 1, pp. 16–26 [Microbiology (Engl. Transl.), vol. 79, no. 1, pp. 13–22].

    CAS  Google Scholar 

  8. Karavaiko, G.I., Kuznetsov, S.N., and Golomzik, A.I., Rol’ mikroorganizmov v vyshchelachivanii metallov iz rud (Role of Microorganisms in Metal Leaching from Ores), Moscow: Nauka, 1972.

    Google Scholar 

  9. Solozhenkin, P.M., Selective Flotation of Biomodified Minerals and Biological Flotation Reagents, 4-yi Moskovskii Mezhdunarodnyi Kongress “Biotekhnologiya: sostoyanie i perspektivy razvitiya” (Biotechnology: State and Prospects, 4th Moscow Int. Congress), Moscow: ZAO Ekspobiokhimtekhnologii, Mendeleev RKhTU, 2007, part 2, p. 331.

    Google Scholar 

  10. Silverman, M.P. and Lundgren, D.G., Studies on the Chemoautotrophic Iron Bacterium Ferrobacillus ferrooxidans. I. An Improved Medium and a Harvesting Procedure for Securing High Cell Yields, J. Bacteriol., 1959, vol. 77, no. 5, pp. 642–647.

    CAS  PubMed  Google Scholar 

  11. Reznikov, A.A., Mulikovskaya, E.P. and Sokolov, I.Yu., Metody analiza prirodnykh vod (Analytical Methods for Natural Waters), Moscow: Nedra, 1970, pp. 140–143.

    Google Scholar 

  12. Suvorovskaya, I.A., Titov, V.I., Brodskaya, V.M., Vasil’ev, P.I., Lipshchits, B.M., and Elentur, M.P., Determination of Arsenic, in Tekhnicheskii analiz tsvetnoi metallurgii (Technical Analysis in Nonferrous Metallurgy), Moscow: Metallurgizdat, 1957, pp. 182–184.

    Google Scholar 

  13. Krasil’nikova, E.H., Bogdanova, T.I., Zakharchuk, L.M., Tsaplina, I.A., and Karavaiko, G.I., Metabolism of Reduced Sulfur Compounds in Sulfobacillus thermosulfidooxidans, strain 1269, Mikrobiologiya, 1998, vol. 67, no. 2, pp. 156–164 [Microbiology (Engl. Transl.), vol. 67, no. 2, pp. 125–132].

    Google Scholar 

  14. Krasil’nikova, E.N., Bogdanova, T.I., Zakharchuk, L.M., and Tsaplina, I.A., Sulfur-Metabolizing Enzymes in Thermoacidophilic Bacteria Sulfobacillus sibiricus, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 1, pp. 62–65 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 40, no. 1, pp. 53–56].

    PubMed  Google Scholar 

  15. Reynolds, E.S., The Use of Lead Citrate at High pH as an Electron-Opaque Stain in Electron Microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  CAS  PubMed  Google Scholar 

  16. Bogdanova, T.I., Mulyukin, A.L., Tsaplina, I.A., El’Registan, G.I., and Karavaiko, G.I., Effect of the Medium Composition and Cultivation Conditions on Sporulationin Chemolithotrophic Bacteria, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 187–193 [Microbiology (Engl. Transl.), vol. 71, no. 2, pp. 158–163].

    CAS  Google Scholar 

  17. Egorova, M.A., Tsaplina, I.A., Zakharchuk, L.M., Bogdanova, T.I., and Krasil’nikova, E.N., Effect of Cultivation Conditions on the Growth and Activities of Sulfur Metabolism Enzymes and Carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes Strain 41, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 4, pp. 448–454 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 40, no. 4, pp. 381–387].

    CAS  PubMed  Google Scholar 

  18. Pivovarova, T.A., Kondrat’eva, T.F., Batrakov, S.G., Esipov, S.E., Sheichenko, V.I., Bykova, S.A., Lysenko, A.M., and Karavaiko, G.I., Phenotypic Features of Ferroplasma acidiphilum Strains YT and Y-2, Mikrobiologiya, 2002, vol. 71, no. 6, pp. 809–818 [Microbiology (Engl. Transl.), vol. 71, no. 6, pp. 698–706].

    CAS  Google Scholar 

  19. Silver, S., Bacterial Interactions with Mineral Cations and Anions: Good and Bad, in Biomineralization and Biological Metal Accumulation, Westbroek, P., de Jong, E.W, Eds., Amsterdam: D. Reidel Publ. Co., 1983, pp. 439457.

    Google Scholar 

  20. Johnson, D.B., Selective Solid Media for Isolating and Enumerating Acidophilic Bacteria, J. Microbiol. Methods, 1995, vol. 23, pp. 205–218.

    Article  Google Scholar 

  21. Kondrat’eva, T.F., Melamud, V.S., Tsaplina, I.A., Bogdanova, T.I., Senyushkin, A.A., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Chromosomal DNA Structure in Sulfobacillus thermosulfidooxidans Analyzed by Pulsed-Field Gel Electrophoresis, Mikrobiologiya, 1998, vol. 67, no. 1, pp. 19–25 [Microbiology (Engl. Transl.), vol. 67, no. 1, pp. 13–18].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Tsaplina.

Additional information

Original Russian Text © I.A. Tsaplina, A.E. Zhuravleva, A.V. Belyi, T.F. Kondrat’eva, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 6, pp. 748–759.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaplina, I.A., Zhuravleva, A.E., Belyi, A.V. et al. Functional diversity of an aboriginal microbial community oxidizing the ore with high antimony content at 46–47°C. Microbiology 79, 735–746 (2010). https://doi.org/10.1134/S0026261710060032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710060032

Keywords

Navigation