Skip to main content
Log in

Decomposition and oxidation of methanol on platinum: A study by in situ X-ray photoelectron spectroscopy and mass spectrometry

  • “Relation between Model and Real Catalysis. Catalysis for Power Engineering,” the 3rd Russian and German Workshop, June 24–27, 2013, Baikal, Russia
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The reactions of the catalytic oxidation and decomposition of methanol on the atomically smooth and high-defect Pt(111) single-crystal surfaces were studied using in situ temperature-programmed reaction and X-ray photoelectron spectroscopy. It was found that the decomposition of methanol on both of the surfaces occurred via two reaction pathways: complete dehydrogenation to CO and decomposition with the C-O bond cleavage. Although the rate of reaction via the latter pathway was lower than the rate of dehydrogenation by three orders of magnitude, the carbon formed as a result of the C-O bond cleavage can be accumulated on the surface of platinum to prevent the further course of the reaction. It was shown that oxygen exhibits high activity toward the formed carbon deposits. As a result, the rate of methanol conversion in the presence of oxygen in a gas phase increased by one or two orders of magnitude; in this case, CO2 and water appeared in the composition of the reaction products as a result of the oxidation of CO and hydrogen, respectively. The high-defect surface of platinum was more active in the reactions of methanol decomposition and oxidation than the atomically smooth Pt(111) single-crystal surface. On the former, selectivity for the formation of methanol dehydrogenation products in oxygen deficiency was higher than on the latter. The main reaction pathways of the decomposition and oxidation of methanol on platinum were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed, T.B. and Lerner, R.M., Science, 1973, vol. 182, p. 1299.

    Article  CAS  Google Scholar 

  2. Song, C., Catal. Today, 2002, vol. 77, p. 17.

    Article  CAS  Google Scholar 

  3. Dillon, R., Srinivasan, S., Arico, A.S., and Antonucci, V., J. Power Sources, 2004, vol. 127, p. 112.

    Article  CAS  Google Scholar 

  4. Houel, V., Millington, P., Rajaram, R., and Tsolakis, A., Appl. Catal., B, 2007, vol. 77, p. 29.

    Article  CAS  Google Scholar 

  5. Kirillov, V.A., Smirnov, E.I., Amosov, Yu.I., Bobrin, A.S., Belyaev, V.D., and Sobyanin, V.A., Kinet. Catal., 2009, vol. 50, p. 18.

    Article  CAS  Google Scholar 

  6. Shen, J.-P. and Song, C., Catal. Today, 2002, vol. 77, p. 89.

    Article  CAS  Google Scholar 

  7. Kua, J. and Goddard, W.A. III, J. Am. Chem. Soc., 1999, vol. 121, p. 10928.

    Article  CAS  Google Scholar 

  8. Sexton, B.A., Surf. Sci., 1981, vol. 102, p. 271.

    Article  CAS  Google Scholar 

  9. Sexton, B.A., Rendulic, K.D., and Hughes, A.E., Surf. Sci., 1982, vol. 121, p. 181.

    Article  CAS  Google Scholar 

  10. Liu, Z., Sawada, T., Takagi, N., Watanabe, K., and Matsumoto, Y., J. Chem. Phys., 2003, vol. 119, p. 4879.

    Article  CAS  Google Scholar 

  11. Akhter, S. and White, J.M., Surf. Sci., 1986, vol. 167, p. 101.

    Article  CAS  Google Scholar 

  12. Attard, G.A., Chibane, K., Ebert, H.D., and Parson, R., Surf. Sci., 1989, vol. 224, p. 311.

    Article  CAS  Google Scholar 

  13. Gibson, K.D. and Dubois, L.H., Surf. Sci., 1990, vol. 233, p. 59.

    Article  CAS  Google Scholar 

  14. Wang, J. and Masel, R.I., Surf. Sci., 1991, vol. 243, p. 199.

    Article  CAS  Google Scholar 

  15. Franaszczuk, K., Herrero, E., Zelenay, P., Wieckowski, A., Wang, J., and Masel, R.I., J. Phys. Chem., 1992, vol. 96, p. 8509.

    Article  CAS  Google Scholar 

  16. Diekhoner, L., Butler, D.A., Baurichter, A., and Luntz, A.C., Surf. Sci., 1998, vol. 409, p. 384.

    Article  CAS  Google Scholar 

  17. Skoplyak, O., Menning, C.A., Barteau, M.A., and Chen, J.G., J. Chem. Phys., 2007, vol. 127, p. 114707.

    Article  Google Scholar 

  18. Levis, R.J., Jiang, Z.C., Winograd, N., Akhter, S., and White, K.M., Catal. Lett., 1988, vol. 1, p. 385.

    Article  CAS  Google Scholar 

  19. Wang, J. and Masel, R.I., J. Am. Chem. Soc., 1991, vol. 113, p. 5850.

    Article  CAS  Google Scholar 

  20. Devis, J.L. and Barteau, M.A., Surf. Sci., 1987, vol. 187, p. 387.

    Article  Google Scholar 

  21. Schauermann, S., Hoffmann, J., Johanek, V., Hartmann, J., Libuda, J., and Freund, H.-J., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, p. 2532.

    Article  CAS  Google Scholar 

  22. Kaichev, V.V., Morkel, M., Unterhalt, H., Prosvirin, I.P., Bukhtiyarov, V.I., Rupprechter, G., and Freund, H.-J., Surf. Sci., 2004, vols. 566–568, p. 1024.

    Article  Google Scholar 

  23. Morkel, M., Kaichev, V.V., Rupprechter, G., Freund, H.-J., Prosvirin, I.P., and Bukhtiyarov, V.I., J. Phys. Chem. B, 2004, vol. 108, p. 12955.

    Article  CAS  Google Scholar 

  24. Kaichev, V.V., Bukhtiyarov, V.I., Rupprechter, G., and Freund, H.-J., Kinet. Catal., 2005, vol. 46, p. 269.

    Article  CAS  Google Scholar 

  25. Kaichev, V.V., Prosvirin, I.P., and Bukhtiyarov, V.I., J. Struct. Chem., 2011, vol. 52, no. 1, suppl. 1, p. 90.

    Article  CAS  Google Scholar 

  26. Kaichev, V.V., Miller, A.V., Prosvirin, I.P., and Bukhtiyarov, V.I., Surf. Sci., 2012, vol. 606, p. 420.

    Article  CAS  Google Scholar 

  27. Kaichev, V.V., Prosvirin, I.P., Bukhtiyarov, V.I., Unterhalt, H., Rupprechter, G., and Freund, H.-J., J. Phys. Chem. B, 2003, vol. 107, p. 3522.

    Article  CAS  Google Scholar 

  28. Joyner, R.W., Roberts, M.W., and Yates, K., Surf. Sci., 1979, vol. 87, p. 501.

    Article  CAS  Google Scholar 

  29. Bukhtiyarov, V.I., Kaichev, V.V., and Prosvirin, I.P., Top. Catal., 2005, vol. 32, p. 3.

    Article  CAS  Google Scholar 

  30. Knop-Gericke, A., Kleimenov, E., Hävecker, M., Blume, R., Teschner, D., Zafeiratos, S., Schlögl, R., Bukhtiyarov, V.I., Kaichev, V.V., Prosvirin, I.P., Nizovskii, A.I., Bluhm, H., Barinov, A., Dudin, P., and Kiskinova, M., Adv. Catal., 2009, vol. 52, p. 213.

    Article  CAS  Google Scholar 

  31. Doniach, S. and Sunjic, M., J. Phys. C: Solid State Phys., 1970, vol. 3, p. 285.

    Article  CAS  Google Scholar 

  32. Miller, A.V., Kaichev, V.V., Prosvirin, I.P., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2013, vol. 117, p. 8189.

    Article  CAS  Google Scholar 

  33. Ertl, G., Neumann, M., and Streit, K.M., Surf. Sci., 1977, vol. 64, p. 393.

    Article  CAS  Google Scholar 

  34. Erley, W. and Wagner, H., J. Chem. Phys., 1980, vol. 72, p. 2207.

    Article  CAS  Google Scholar 

  35. Rupprechter, G., Delwig, T., Unterhalt, H., and Freund, H.-J., J. Phys. Chem. B, 2001, vol. 105, p. 3797.

    Article  CAS  Google Scholar 

  36. Rodriguez, N.M., Anderson, P.E., Wootsch, A., Wild, U., Schlögl, R., and Paal, Z., J. Catal., 2001, vol. 197, p. 365.

    Article  CAS  Google Scholar 

  37. Fuhrmann, T., Kinne, M., Whelan, C.M., Zhu, J.F., Denecke, R., and Steinruck, H.-P., Chem. Phys. Lett., 2004, vol. 390, p. 208.

    Article  CAS  Google Scholar 

  38. Pozdnyakova, O., Teschner, D., Wootsch, A., Kröhnert, J., Steinhauer, B., Sauer, H., Toth, L., Jentoft, F.C., Knop-Gericke, A., Paal, Z., and Schlögl, R., J. Catal., 2006, vol. 237, p. 1.

    Article  CAS  Google Scholar 

  39. Croy, J.R., Mostafa, S., Heinrich, H., and Cuenya, B.R., Catal. Lett., 2009, vol. 131, p. 21.

    Article  CAS  Google Scholar 

  40. Starr, D.E., Pazhetnov, E.M., Stadnichenko, A.I., Boronin, A.I., and Shaikhutdinov, S.K., Surf. Sci., 2006, vol. 600 P, p. 2688.

    Article  Google Scholar 

  41. Larciprete, R., Goldoni, A., Groso, A., Lizzit, S., and Paolucci, G., Surf. Sci., 2001, vols. 482–485, p. 134.

    Article  Google Scholar 

  42. Matsumoto, Y., Gruzdkov, Y.A., Watanabe, K., and Sawabe, K., J. Chem. Phys., 1996, vol. 105, p. 4775.

    Article  CAS  Google Scholar 

  43. Kinne, M., Fuhrmann, T., Zhu, J.F., Tränkenschuh, B., Denecke, R., and Steinrück, H.-P., Langmuir, 2004, vol. 20, p. 1819.

    Article  CAS  Google Scholar 

  44. Kinne, M., Fuhrmann, T., Whelan, C.M., Zhu, J.F., Pantförder, J., Probst, M., Held, G., Denecke, R., and Steinrück, H.-P., J. Chem. Phys., 2002, vol. 117, p. 10852.

    Article  CAS  Google Scholar 

  45. Yeo, Y.Y., Vattuone, L., and King, D.A., J. Chem. Phys., 1997, vol. 106, p. 392.

    Article  CAS  Google Scholar 

  46. Mieher, W.D., Whitman, L.J., and Ho, W., J. Chem. Phys., 1989, vol. 91, p. 3228.

    Article  CAS  Google Scholar 

  47. Vestergaard, E.K., Thostrup, P., An, T., Læsgaard, E., Stensgaard, I., Hammer, B., and Besenbacher, F., Phys. Rev. Lett., 2002, vol. 88, p. 259601.

    Article  Google Scholar 

  48. Longwitz, S.R., Schnadt, J., Vestergaard, E.K., Vang, R.T., Læsgaard, E., Stensgaard, I., Brune, H., and Besenbacher, F., J. Phys. Chem. B, 2004, vol. 108, p. 14497.

    Article  CAS  Google Scholar 

  49. Endo, M., Matsumoto, T., Kubota, J., Domen, K., and Hirose, C., J. Phys. Chem. B, 2000, vol. 104, p. 4916.

    Article  CAS  Google Scholar 

  50. Kuzume, A., Mochiduki, Y., Tsuchida, T., and Ito, M., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 2175.

    Article  CAS  Google Scholar 

  51. Sawada, T., Liu, Z., Takagi, N., Watanabe, K., and Matsumoto, Y., Chem. Phys. Lett., 2004, vol. 392, p. 334.

    Article  CAS  Google Scholar 

  52. Endo, M., Matsumoto, T., Kubota, J., Domen, K., and Hirose, C., Surf. Sci., 1999, vol. 441, p. L931.

    Article  CAS  Google Scholar 

  53. Endo, M., Matsumoto, T., Kubota, J., Domen, K., and Hirose, C., J. Phys. Chem. B, 2001, vol. 105, p. 1573.

    Article  CAS  Google Scholar 

  54. Gunther, S., Zhou, L., Hävecker, M., Knop-Gericke, A., Kleimenov, E., Schlögl, R., and Imbihl, R., J. Chem. Phys., 2006, vol. 125, p. 114709.

    Article  CAS  Google Scholar 

  55. Carley, A.F., Owens, A.W., Rajumon, M.K., Roberts, M.W., and Jackson, S.D., Catal. Lett., 1996, vol. 37, p. 79.

    Article  CAS  Google Scholar 

  56. Carley, A.F., Davies, P.R., and Mariotti, G.G., Surf. Sci., 1998, vol. 401, p. 400.

    Article  CAS  Google Scholar 

  57. Stone, P., Poulston, S., Bennett, R.A., Price, N.J., and Bowker, M., Surf. Sci., 1998, vol. 418, p. 71.

    Article  CAS  Google Scholar 

  58. Hüfner, S. and Wertheim, G.K., Phys. Rev. B: Condens. Matter Mater. Phys., 1975, vol. 11, p. 678.

    Article  Google Scholar 

  59. Unterhalt, H., Rupprechter, G., and Freund, H.-J., J. Phys. Chem. B, 2002, vol. 106, p. 356.

    Article  CAS  Google Scholar 

  60. Rupprechter, G., Kaichev, V.V., Unterhalt, H., Morkel, M., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2004, vol. 235, p. 26.

    Article  CAS  Google Scholar 

  61. Yudanov, I.V., Neyman, K.M., and Rosch, N., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 2396.

    Article  CAS  Google Scholar 

  62. Yudanov, I.V., Matveev, A.V., Neyman, K.M., and Rösch, N., J. Am. Chem. Soc., 2008, vol. 130, p. 9342.

    Article  CAS  Google Scholar 

  63. Greeley, J. and Mavrikakis, M., J. Am. Chem. Soc., 2004, vol. 126, p. 3910.

    Article  CAS  Google Scholar 

  64. Kandoi, S., Greeley, J., Sanchez-Castillo, M.A., Evans, S.T., Gokhale, A.A., Dumesic, J.A., and Mavrikakis, M., Top. Catal., 2006, vol. 37, p. 17.

    Article  CAS  Google Scholar 

  65. Han, S.-J., Lee, C.-W., Yoon, H., and Kang, H., J. Chem. Phys., 2002, vol. 116, p. 2684.

    Article  CAS  Google Scholar 

  66. Peng, T.L. and Bernasek, S.L., J. Chem. Phys., 2009, vol. 131, p. 154701.

    Article  CAS  Google Scholar 

  67. Greeley, J. and Mavrikakis, M., J. Am. Chem. Soc., 2002, vol. 124, p. 7193.

    Article  CAS  Google Scholar 

  68. Lin, S., Ma, J., Zhou, L., Huang, C., Xie, D., and Guo, H., J. Phys. Chem. C, 2013, vol. 117, p. 451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kaichev.

Additional information

Original Russian Text © V.V. Kaichev, I.P. Prosvirin, V.I. Bukhtiyarov, 2014, published in Kinetika i Kataliz, 2014, Vol. 55, No. 4, pp. 535–546.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaichev, V.V., Prosvirin, I.P. & Bukhtiyarov, V.I. Decomposition and oxidation of methanol on platinum: A study by in situ X-ray photoelectron spectroscopy and mass spectrometry. Kinet Catal 55, 509–519 (2014). https://doi.org/10.1134/S0023158414040065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414040065

Keywords

Navigation