Skip to main content
Log in

Current Views on Schwann Cells: Development, Plasticity, Functions

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review addresses current concepts on the origin and functions of Schwann cells (SCs) as well as phenotypic characterization of their precursors at different ontogenetic stages. The necessity of versatile fundamental exploring SCs is dictated by searching for novel ways to stimulate the recovery of peripheral nerve fibers, including cell and gene therapy. Being a major structural component of the nerve, SCs have a decisive influence on degenerative and reparative processes therein. Particularly accentuated is the lack of knowledge of the molecular mechanisms that regulate SCs differentiation at different ontogenetic stages and their plasticity in the pathology of nerve conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salzer, J.L., Schwann cell myelination, Cold Spring Harb. Perspect. Biol, 2015, vol. 7 (8), a020529. https://doi.org/10.1101/cshper-spect.a020529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zalc, B., The acquisition of myelin: a success story, Novartis Found. Symp., 2006, vol.276, pp. 15–21.

    CAS  PubMed  Google Scholar 

  3. Zalc, B., Goujet, D., and Colman, D., The origin of the myelination program in vertebrates, Curr. Biol, 2008, vol. 18 (12), pp. R511–R512. https://doi.org/10.1016/j.cub.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Salzer, J.L. and Zalc, B., Myelination, Curr. Biol, 206, vol. 26 (20), pp. R971-R975. https://doi.org/10.1016/j.cub.2016.07.074

    Article  CAS  PubMed  Google Scholar 

  5. Waller, A., New method for the study of the nervous system, Lond. J. Med., 1852, vol.4 (43), pp. 609–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramony Cajal, S., Degeneration and regeneration of the nervous system, 1–2, L., 1928, Oxf. H. Mil-ford.

  7. Doynikov, B.S., Izbrannye trudypo neiromorfologii i nevropatologii. (The Selected Works on Neuromorphology and Neuropathology), 1955, Moscow.

    Google Scholar 

  8. Nozdrachev, A.D. and Chumasov, E.I., Perifericheskaya nervnaya sistema (Peripheral Nervous System), 1999, St. Petersburg.

    Google Scholar 

  9. Walsh, S. and Midha, R., Use of stem cells to augment nerve injury repair, Neurosurg., 2009, vol. 65, pp. 80–86.

    Article  Google Scholar 

  10. Petrova, E.S., Studies of the histogenetic and neurodegenerative processes in the nervous system using heterotopic neurotransplantation, Morfol, 2009, vol. 36 (6), pp. 8–9.

    Google Scholar 

  11. Chelyshev, Yu.A., Regeneratsiya v nervnoi sisteme. Rukovodstvo po gistologii (Regeneration in the Nervous System. The Handbook on Histology), Danilov, R.K., Ed., 2011, St. Petersburg, pp. 656–665.

  12. Petrova, E.S., The use of stem cells to stimulate regeneration of damaged nerve, Cytology, 2012, vol. 54, pp. 525–540.

    CAS  Google Scholar 

  13. Petrova, E.S., Injured nerve regeneration using cell-based therapies: current challenges, Acta Naturae, 2015, vol. 7 (3(26)), pp. 42–53.

    Article  Google Scholar 

  14. Fairbairn, N.G., Meppelink, A.M., Ng-Glazier, J., Randolph, M.A., and Winograd, J.M., Augmenting peripheral nerve regeneration using stem cells: A review of current opinion, World J. Stem Cells, 2015, vol. 7 (1), pp. 11–26.

    Google Scholar 

  15. Shchanitsyn, I.N., Ivanov, A.N., Bazhanov, S.P., Ninel’, V.G., Puchinyan, D.M., and Norkin, I.A., Stimulation of peripheral nerve regeneration: current status, problems and perspectives, Usp. Fiziol. Nauk, 2017, vol. 48 (3), pp. 92–112.

    Google Scholar 

  16. Karagyaur, M.N., Makarevich, P.I., Shev-chenko, E.K., Stambolsky, D.V., Kalinina, N.I., and Parfyonova, Ye.V., Modern approaches to peripheral nerve regeneration after injury: the prospects of gene and cell therapy, Genes and Cells, 2017, vol. 12(1), pp. 6–14.

    Google Scholar 

  17. Schwann, T., Microscopical researches into the accordance in the structure and growth of animals and plants, London, 1847.

    Google Scholar 

  18. Bhatheja, K. and Field, J., Schwann cells: origins and role in axonal maintenance and regeneration, Int. J. Biochem. Cell Biol, 2006, vol. 38, pp. 1995–1999.

    Article  CAS  PubMed  Google Scholar 

  19. Pineda, A., The “lemmocyte” in peripheral-nerve tumors, J. Neurosurg., 1965, vol. 22, pp. 594–601.

    Article  CAS  PubMed  Google Scholar 

  20. Odinak, M.M., Zhivolupov, S.A., Rashi-dov, N.A., and Samartsev, I.N., Peculiarities of development of denervation-reinervation process in traumatic neuropathies and plexopathies, Vestn. Ross. Voenno-Med. Akad., 2007, vol.4 (20), pp. 130–140.

    Google Scholar 

  21. Terminologia histologica. Mezhdunarodnye terminy po tsitologii i gistologii cheloveka s oficial’nym spis-kom russkih ekvivalentov (Terminologia histologica. International Terms for Human Cytology and Histology with an official list of Russian Equivalents), Banin, V.V. and Bykov, V.L., Eds., 2009, Moscow.

  22. Zochodne, D.W., Neurobiology of Peripheral Nerve Regeneration, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, 2008.

    Book  Google Scholar 

  23. Jessen, K.R., Mirsky, R., and Lloyd, A.C., Schwann cells: development and role in nerve repair, Cold Spring Harb. Perspect. Biol., 2015, vol.7 (7): a020487. https://doi.org/10.1101/csh-perspect.a020487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S., Xu, X., Esper, R.M., Loeb,J.A., Shrager, P., Chao, M.V., Falls, D.L., Role, L., and Salzer, J.L., Neuregulin-1 type III determines the ensheathment fate of axons, Neuron, 2005, vol. 47, pp. 681–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jessen, K.R., Mirsky, R., and Lloyd, A.C., Schwann cells: development and role in nerve repair, Cold Spring Harb. Perspect. Biol, 2015, vol.7 (7), a020487. https://doi.org/10.1101/csh-perspect.a020487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zalc, B., The acquisition of myelin: an evolutionary perspective, Brain Res., 206, vol. 1641 (Pt. A), pp. 4–10.

    Article  CAS  PubMed  Google Scholar 

  27. Monk, K.R., Feltri, M.L., and Taveggia, C., New insights on Schwann cell development, Glia, 2015, vol. 63, pp. 1376–1393.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu, W.M., Yu, H., Chen, Z.L., and Strickland, S., Disruption of laminin in the peripheral nervous system impedes nonmyelinating Schwann cell development and impairs nociceptive sensory function, Glia, 2009, vol. 57, pp. 850–859.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Griffin, J.W. and Thompson, W.J., Biology and pathology of nonmyelinating Schwann cells, Glia, 56, pp. 1518–1531.

    Article  PubMed  Google Scholar 

  30. Diamond, J., Holmes, M., and Coughlin, M., Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat, J. Neurosci., 1992, vol. 12, pp. 1454–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Young, P., Nie, J., Wang, X., McGlade, C.J., Rich, M.M., and Feng, G., LNX1 is a perisynaptic Schwann cell specific E3 ubiquitin ligase that interacts with ErbB2, Mol. Cell. Neurosci., 2005, vol. 30, pp. 238–248.

    Article  CAS  PubMed  Google Scholar 

  32. Zuo, Y., Lubischer, J.L., Kang, H., Tian, L., Mikesh, M., Marks, A., Scofield, V.L., Maika, S., Newman, C., Krieg, P., and Thompson, W.J., Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination, J. Neurosci., 2004, vol. 24, pp. 10999–11009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, I.W., Mikesh, M., Lee, Y., and Thompson, W.J., Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination, J. Neurosci., 2013, vol. 33, pp. 17724–17736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang, H., Tian, L., Mikesh, M., Lichtman, J.W., and Thompson, W.J., Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury, J. Neurosci., 2014, vol. 34, pp. 6323–6333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Le Douarin, N.M., Cell line segregation during peripheral nervous system ontogeny, Science, vol. 231, pp. 1515–1522.

  36. Kidd, G.J., Ohno, N., and Trapp, B.D., Biology of Schwann cells, Handb. Clin. Neurol, 2013, vol. 115, pp. 55–79.

    Article  PubMed  Google Scholar 

  37. Liu, Z., Jin, Y.Q., Chen, L., Wang, Y., Yang, X., Cheng, J., Wu, W., Qi, Z., and Shen, Z., Specific marker expression and cell state of Schwann cells during culture in vitro, PLoS One, 2015, vol. 10 (4), e0123278. https://doi.org/10.1371/jour-nal.pone.0123278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hartline, D.K. and Colman, D.R., Rapid conduction and the evolution of giant axons and myelinated fibers, Curr. Biol., 2007, vol. 17 (1), pp. R29–R35. https://doi.org/10.1016/j.cub.2006.11.042

    Article  CAS  PubMed  Google Scholar 

  39. De Bellard, M.E., Myelin in cartilaginous fish, Brain Res., 2016, vol. 1641 (Pt. A), pp. 34–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hartline, D.K., The evolutionary origins of glia, Glia, 2011, vol. 59, pp. 1215–1236.

    Article  PubMed  Google Scholar 

  41. Davis, A.D., Weatherby, T.M., Hartline, D.K., and Lenz, P.H., Myelin-like sheaths in copepod axons, Nature, 1999, vol. 398, p. 571.

    Article  CAS  PubMed  Google Scholar 

  42. Kastriti, M.E. and Adameyko, I., Specification, plasticity and evolutionary origin of peripheral glial cells, Curr. Opin. Neurobiol., 2017, vol. 47, pp. 196–202.

    Article  CAS  PubMed  Google Scholar 

  43. Birchmeier, C., ErbB receptors and the development of the nervous system, Exp. Cell Res., 2009, vol. 315, pp. 611–618.

    Article  CAS  PubMed  Google Scholar 

  44. Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Yamaai, T., Lewin, G.R., and Birchmeier, C., Severe neuropathies in mice with targeted mutations in the ErbB3 receptor, Nature, 1997, vol. 389, pp. 725–730.

    Article  CAS  PubMed  Google Scholar 

  45. Nave, K.-A and Trapp, B.D., Axon-glial signaling and the glial support of axon function, Annu. ReNeurosci., 2008, vol. 31, pp. 535–561.

    Article  CAS  Google Scholar 

  46. Varon, S.S. and Bunge, R.P., Trophic mechanisms in the peripheral nervous system, Annu. ReNeurosci., 1978, vol. 1, pp. 327–361.

    Article  CAS  Google Scholar 

  47. Morrison, B.M., Lee, Y., and Rothstein, J.D., Oligodendroglia: metabolic supporters of axons, Trends Cell Biol, 2013, vol. 23, pp. 644–651.

    Article  CAS  PubMed  Google Scholar 

  48. Viader, A, Sasaki, Y, Kim, S., Strickland, A., Workman, C.S., Yang, K., Gross, R.W., and Milbrandt, J., Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy, Neuron, 2013, vol. 77, pp. 886–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Court, F.A., Midha, R., Cisterna, B.A., Grochmal, J., Shakhbazau, A., Hendriks, W.T., and Van Minnen, J., Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons, Glia, 2011, vol. 59, pp. 1529–1539.

    Article  PubMed  Google Scholar 

  50. Ching, R.C. and Kingham, P.J., The role of exosomes in peripheral nerve regeneration, Neural Regen. Res., 2015, vol. 10, pp. 743–747.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y., El Andaloussi, S., and Wood, M.J., Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy, Human Mol Gen., 2012, vol. 21 (Rl), pp. R125–R134. https://doi.org/10.1093/hmg/dds317.2012

    Article  CAS  Google Scholar 

  52. Lopez-Leal, R. and Court, F.A., Schwann cell exosomes mediate neuron-glia communication and enhance axonal regeneration, Cell Mol. Neurobiol, 2016, vol. 36, pp. 429–436.

    Article  CAS  PubMed  Google Scholar 

  53. Heumann, R., Regulation of the synthesis of nerve growth factor, J. Exp. Biol, 1987, vol. 132, pp. 133–150.

    CAS  PubMed  Google Scholar 

  54. Lewin, G.R. and Barde, Y.A., Physiology of the neurotrophins, Annu. ReNeurosci., 1996, vol. 19, pp. 289–317.

    Article  CAS  Google Scholar 

  55. Chen, Z.L., Yu, W.M., and Strickland, S., Peripheral regeneration, Annu. ReNeurosci., 2007, vol. 30, pp. 209–233.

    Article  CAS  Google Scholar 

  56. Jiang, X., Liu, L., Zhang, B., Lu, Z., Qiao, L., Feng, X., and Yu, W., Effects of Angelica extract on Schwann cell proliferation and expressions of related proteins, Evid. Based Compl. Altern. Med., 2017, 6358392. https://doi.org/10.1155/2017/6358392.

    Google Scholar 

  57. Shamash, S., Reichert, F., and Rotshenker, S., The cytokine network of Wallerian degeneration: tumor necrosis factoralpha, interleukin-1 alpha, and interleukin-lbeta, J. Neurosci., 2002, vol. 22, pp. 3052–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tofaris, G.K., Patterson, P.H., Jessen, K.R., and Mirsky, R., Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF, J. Neurosci., 2002, vol. 22, pp. 6696–6703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, P., Piao, X., and Bonaldo, P., Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury, Acta Neuropathol., 2015, vol. 130, pp. 605–618.

    Article  CAS  PubMed  Google Scholar 

  60. Jung, J., Frump, D., Su, J., Wang, W., Mozaffar, T., and Gupta, R., Desert hedgehog is a mediator of demyelination in compression neuropathies, Exp. Neurol., 2015, vol. 271, 84–94.

    Article  CAS  PubMed  Google Scholar 

  61. Li, W., Kohara, H., Uchida, Y., James, J.M., Soneji, K., Cronshaw, D.G., Zou, Y.R., Nagasawa, T., and Mukouyama, Y.S., Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin, DeCell, 2013, vol. 24, pp. 359–371.

    CAS  Google Scholar 

  62. Hirata, K. and Kawabuchi, M., Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration, Microsc. Res. Tech., 2002, vol. 57, pp. 541–547.

    Article  PubMed  Google Scholar 

  63. Beuche, W. and Friede, R.L., The role of non-resident cells in Wallerian degeneration, J. Neurocy-tol, 1984, vol. 13, pp. 767–796.

    Article  CAS  Google Scholar 

  64. Chumasov, E.I. and Svetikova, K.M., The structure and nature of the macrophages participating in Wallerian degeneration of nerve fibers, Arkh. Anat. Gistol. Embriol, 1991, vol. 100 (5), pp. 13–21.

    Google Scholar 

  65. Brosius Lutz, A. and Barres, B.A, Contrasting the glial response to axon injury in the central and peripheral nervous systems, DeCell, 2014, vol. 28, pp. 7–17.

    CAS  Google Scholar 

  66. Perry, V.H., Tsao, J.W., Fearn, S., and Brown, M.C., Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice, Eur. J. Neurosci., 1995, vol. 7, pp. 271–280.

    Article  CAS  PubMed  Google Scholar 

  67. Gomez-Sanchez, J.A, Carty, L., Iruarrizaga-Lejarreta, M., Palomo-Irigoyen, M., Varela-Rey, M., Griffith, M., Hantke, J., Macias-Camara, N., Azkargorta, M., Aurrekoetxea, I., De Juan, V.G., Jefferies, H.B., Aspichueta, P., Elortza, F., Aransay, AM., Martinez-Chantar, M.L., Baas, F., Mato, J.M., Mirsky, R., Woodhoo, A, and Jessen, K.R., Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves, J. Cell Biol., 2015, vol. 210, pp. 153–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brosius Lutz, A, Chung, W.S., Sloan, S.A., Carson, G.A., Zhou, L., Lovelett, E., Posada, S., Zuchero, J.B., and Barres, B.A., Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury, Proc. Natl. Acad. Sci. USA, 2017, vol. 114 (38), E8072–E8080. https://doi.org/10.1073/pnas.1710566114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Camara-Lemarroy, C.R., Guzman-de la Garza, F.J., and Fernandez-Garza, N.E., Molecular inflammatory mediators in peripheral nerve degeneration and regeneration, Neuroimmuno-modul, 2010, vol. 17, pp. 314–324.

    Article  CAS  Google Scholar 

  70. Arthur-Farraj, P.J., Latouche, M., Wilton, D.K., Quintes, S., Chabrol, E., Banerjee, A., Woodhoo, A, Jenkins, B., Rahman, M., Turmaine, M., Wicher, G.K., Mitter, R., Greensmith, L., Behrens, A., Raivich, G., Mirsky, R., and Jessen, K.R., C-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration, Neuron, 2012, vol. 75, pp. 633–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gomez-Sanchez, J.A., Pilch, K.S., van der Lans, M., Fazal, S.V., Benito, C., Wagstaff, L.J., Mirsky, R., and Jessen, K.R., After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on remyelination, J. Neurosci., 2017, vol. 37, pp. 9086–9099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carr, M.J. and Johnston, A.P., Schwann cells as drivers of tissue repair and regeneration, Curr. Opin. Neurobiol, 2017, vol. 47, pp. 52–57.

    Article  CAS  PubMed  Google Scholar 

  73. Kaukua, N., Shahidi, M.K., Konstantinidou, C., Dyachuk, V., Kaucka, M., Furlan, A., An, Z., Wang, L., Hultman, I., Ahrlund-Richter, L., Blom, H., Brismar, H., Lopes, N.A., Pachnis, V., Suter, U., Clevers, H., Thesleff, I., Sharpe, P., Ernfors, P., Fried, K., and Adameyko, I., Glial origin of mesenchymal stem cells in a tooth model system, Nature, 2014, vol. 513, pp. 551–554.

    Article  CAS  PubMed  Google Scholar 

  74. Adameyko, I., Lallemend, F., Aquino, J.B., Pereira, J.A, Topilko, P., Muller, T., Fritz, N., Beljajeva, A, Mochii, M., Liste, I., Usoskin, D., Suter, U., Birchmeier, C., and Ernfors, P., Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin, Cell, 2009, vol. 139, pp. 366–379.

    Article  CAS  PubMed  Google Scholar 

  75. Widera, D., Hermann, P., Zander, C., Imiel-ski, Y., Heidbreder, M., Heilemann, M., Kalts-chmidt, C., and Kaltschmidt, B., Schwann cells can be reprogrammed to multipotency by culture, Stem Cells Dev., 2011, vol. 20, pp. 2053–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Uesaka, T., Nagashimada, M., and Enomoto, H., Neuronal Differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system, J. Neurosci., 2015, vol. 35, pp. 9879–9888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tapinos, N. and Rambukkana, A., Insights into regulation of human Schwann cell proliferation by Erkl/2 via a MEK-independent and p56Lck-dependent pathway from leprosy bacilli, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 9188–9193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wippold, F.J. 2nd, Lubner, M., Perrin, R.J., Lammle, M., and Perry, A, Neuropathology for the neuroradiologist: Antoni A and Antoni B tissue patterns, AJNR Am. J. Neuroradiol, 2007, vol. 28 (9), pp. 1633–1638.

    Google Scholar 

  79. Gomez-Sanchez, J.A., Lopez de Armentia, M., Lujan, R., Kessaris, N., Richardson, W.D., and Cabedo, H., Sustained axon-glial signaling induces Schwann cell hyperproliferation, Remak bundle myelination, and tumorigenesis, J. Neurosci., 2009, vol. 29, pp. 11304–11315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nenashev, E.A., Cherekaev, V.A., Kadasheva, A.B., Kozlov, A.V., Rotin, D.L., and Stepanyan, M.A, Transformation of trigeminal nerve tumor into malignant peripheral nerve sheath tumor (MPNST), Vopr. Neirokhirurg. im. N.N. Burdenko, 2012, vol. 76 (5), pp. 58–62.

    Google Scholar 

  81. Chelyshev, J.A and Viktorov, I.V., Cell technologies of remyelination after spinal cord trauma, Nevrol. Vestnik, 2009, vol. 41 (1), pp. 49–55.

    Google Scholar 

  82. Levi, A.D., Gunard, V., Aebischer, P., and Bunge, R.P., The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve, J. Neurosci., 1994, vol. 14 (3), Pt. 1, pp. 1309–1319.

    Google Scholar 

  83. Kim, D.H., Connolly, S.E., Kline, D.G., Voorhies, R.M., Smith, A., Powell, M., Yoes, T., and Daniloff, J.K., Labeled Schwann cell transplants versus sural nerve grafts in nerve repair, J. Neurosurg., 1994, vol. 80, pp. 254–260.

    Article  CAS  PubMed  Google Scholar 

  84. Rajangam, T. and An, S.S., Fibrinogen and fibrin based micro and nano scaffolds incorporated withdrugs, proteins, cells and genes for therapeutic biomedical applications, Int. J. Nanomed., 2013, vol. 8, pp. 3641–3662.

    Google Scholar 

  85. Hadlock, T., Sundback, C., Hunter, D., Cheney, M., and Vacanti, J.P., A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration, Tissue Eng., 2000, vol. 6, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  86. Radtke, C., Akiyama, Y., Lankford, K.L., Vogt, P.M., Krause, D.S., and Kocsis, J.D., Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons, Neurosci. Lett., 2005, vol. 387, pp. 85–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schmitte, R., Tipold, A, Stein, V.M., Schenk, H., Flieshardt, C., Grothe, C., and Haastert, K., Genetically modified canine Schwann cells: in vitro and in vivo evaluation of their suitability for peripheral nerve tissue engineering, J. Neurosci. Methods, 2010, vol. 186, pp. 202–208.

    Article  CAS  PubMed  Google Scholar 

  88. Timmer, M., Robben, S., Miiller-Ostermeyer, F., Nikkhah, G., and Grothe, C., Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2, Cell Transplant., 2003, vol. 12, pp. 265–277.

    Article  CAS  PubMed  Google Scholar 

  89. Haastert, K., Lipokatic, E., Fischer, M., Timmer, M., and Grothe, C., Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms, Neurobiol. Dis., 2006, vol. 21, pp. 138–153.

    Article  CAS  PubMed  Google Scholar 

  90. Li, Q., Ping, P., Jiang, H., and Liu, K., Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve, Microsurg., 2006, vol.26, 116–121.

    Article  CAS  Google Scholar 

  91. Pettingill, L.N., Minter, R.L., and Shepherd, R.K., Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro, Neurosci., 2008, vol. 152, pp. 821–818.

    Article  CAS  Google Scholar 

  92. Madduri, S. and Gander, B., Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration, J. Periph. Nerv. Syst., 2010, vol. 15, pp. 93–103.

    Article  CAS  Google Scholar 

  93. Shaimardanova, G.F., Bashankaev, S.D., Izmailov, A.A., Fadeyev, F.O., Sokolov, M.Ye., and Islamov, R.R., Stimulation of regeneration of rat spinal cord by adenoviruses carrying genes encoding GDNF, NCAM1 AND VEGF165, Morfol, 2017, vol. 151 (3), p. 115.

    Google Scholar 

  94. Shaimardanova, G.F., Mukhamedshina, Y.O., and Chelyshev, Y.A., Assessment of efficiency of local delivery pathways of therapeutic genes in murine spinal cord injury: a correlation of structural and functional parameters, Sovr. Tekhnol. Med., 2013, vol. 5 (3), pp. 16–22.

    Google Scholar 

  95. Petrova, E.S., A study of regeneration of the crushed rat sciatic nerve after use of experimental cell therapy, Mezhdunar. Nauchno-Issled. Zh., 2018, vol. 4 (70), pp. 42–45.

    Google Scholar 

  96. Petrova, E.S., Isaeva, E.N., Kolos, E.A, and Korzhevskii, D.E., Vascularization of the damaged nerve under the effect of experimental cell therapy, Klet. Tekhnol. Biol. Med., 2018, vol. 1, pp. 53–57.

    Google Scholar 

Download references

Funding

This work was implemented within a state assignment by the Russian Federation Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Petrova.

Ethics declarations

This study did not involve human or animal subjects as research objects.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 6, pp. 383–397.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.S. Current Views on Schwann Cells: Development, Plasticity, Functions. J Evol Biochem Phys 55, 433–447 (2019). https://doi.org/10.1134/S0022093019060012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019060012

Keywords

Navigation