Skip to main content
Log in

Phospholipid composition of blood erythrocytes of tundra voles (Microtus oeconomus Pall.) inhabiting under different radioecological conditions

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Phospholipid composition has been studied in blood erythrocytes of tundra voles Microtus oeconomus inhabiting territories with normal and increased levels of natural radioactivity in different phases of the population cycle. It has been shown that rearrangement in the lipid component of blood erythrocyte membranes of tundra voles from radioactively polluted areas are associated with intensification of the lipid peroxidation (LPO) processes and are similar to those observed at the organism natural aging. It has been noted that the capability for peroxide oxidation in erythrocyte lipids is one of the most sensitive stages of the LPO processes to action of the low-intensity radiation in the natural habitat of animals. The change of the populational cycle phases, which is accompanied by hormonal rearrangements in the animal body, produces an essential effect on the degree of expression of the radiation-induced changes of the studied parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maslov, V.I. and Maslova, K.I., Radioecological Groups of Mammals and Birds of Biogeocenoses in Regions of Increased Natural Radioactivity, Radioekhologicheskie issledovaniya v prirodnykh biogeotsenozakh (Radioecological Investigations in Natural Biogeocenoses), Moscow, 1972, pp. 161–172.

  2. Sokolov, V.E., Krivolutskii, D.Ya., and Usachev, V.L., Dikie zhivotnye v global’nom radioekologicheskom monitoringe (Wild Animals in the Global Radioecological Monitoring), Moscow, 1989.

  3. Kudyasheva, A.G., Shishkina, L.N., Zagorskaya, N.G., and Taskaev, A.I., Biokhimicheskie mekhanizmy radiatsionnogo porazheniya prirodnykh populyatsii myshevidnykh gryzunov (Biochemical Mechanisms of Radiation Damage of Natural Mouse-Like Rodent Populations), St. Petersburg, 1997.

  4. Kudyasheva, A.G., Shishkina, L.N., Shevchenko, O.G., Bashlykova, L.A., and Zagorskaya, N.G., Biologicheskie effekty radioaktivnogo zagryazneniya v populyatsiyakh myshevidnykh gryzunov (Biological Effects of Radioactive Contamination in the Mouse-Like Rodent Populations), Ekaterinburg, 2004.

  5. Kudyasheva, A.G., Shishkina, L.N., Zagorskaya, N.G., and Taskaev, A.I., Biochemical Consequences of Radioactive Contamination in the Exclusion Zone of the Chernobyl Accident in Population of Wild Rodent, 20 Years after the Chernobyl Accident: Past, Present and Future, Burlakova, E.B. and Naidich, V.I., Eds., New York, 2006, pp. 303–329.

  6. Novitskii, V.V., Ryazantseva, N.V., and Stepovaya, E.A., Fiziologiya i patofiziologiya eritrotsita (Physiology and Pathophysiology of Erythrocyte), Tomsk, 2004.

  7. Novitskii, V.V., Ryazantseva, N.V., Stepovaya, E.A., Fedorova, T.S., Kravets, E.B., Ivanov, V.V., Zhavoronok, T.V., Chasovskikh, N.Yu., Chudakova, O.M., Butusova, V.N., and Yakovleva, N.M., Molecular Disturbances of Erythrocyte Membrane in Pathologies of Different Genesis Are the Typical Reaction of Organism: The Contour of Problem, Byull. Sib. Med., 2006, no. 2, pp. 62–69.

  8. Gribanov, G.A., Peculiarities of Structure and Biological Role of Lysophospholipids, Vopr. Med. Khim., 1991, vol. 37, no. 4, pp. 2–16.

    CAS  PubMed  Google Scholar 

  9. Gennis, R., Biomembrany: Molekulyarnaya struktura i funktsii (Biomembranes: Molecular Structure and Functions), Moscow, 1997.

  10. Torkhovskaya, T.I., Ipatova, O.M., Zakharova, T.S., Kochetova, M.M., and Khalilov, E.M., Cellular Receptors to Lysophospholipids as Promoters of Signaling Effects, Biokhimiya, 2007, vol. 72, pp. 149–157.

    Google Scholar 

  11. Avrova, N.F., Biochemical Mechanisms of Adaptation to the Changing Environmental Conditions in Vertebrates: Role of Lipids, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 170–180.

    CAS  PubMed  Google Scholar 

  12. Gerbin, E.A. and Chukhlovin, A.B., Radiatsionnaya gematologiya (Radiation Hematology), Moscow, 1989.

  13. Shevchenko, O.G., Shishkina, L.N., and Kudyasheva, A.G., Effect of Populational Factors on the Phospholipid Composition in Different Tissues of Tundra Voles from Natural Populations, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 131–135.

    CAS  PubMed  Google Scholar 

  14. Shevchenko, O.G., Shishkina, L.N., and Kudyasheva, A.G., Phospholipid Composition in the Tissues of Tundra VolesMicrotus oeconomus, Inhabiting Territories with Increased Radiation Background, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, pp. 218–224.

    CAS  PubMed  Google Scholar 

  15. Testov, B.V. and Taskaev, A.I., Concentration of Radioactive Emanations in the Rodent Holes in Areas with Increased Natural Radioactivity, Materialy radioekologicheskikh issledovanii v prirodnykh biogeotsenozakh (Materials of Radioecological Investigations in Natural Biogeocenoses), Syktyvkar, 1971, pp. 65–76.

  16. Keits, M., Tekhnika lipidologii (Methodology of Lipids Investigations), Moscow, 1975.

  17. Biologicheskie membrany. Metody (Biological Membranes. Methods), Findley, G.B. and Ewans, U.G., Eds., Moscow, 1990.

  18. Shishkina, L.N., Peculiarities of Functioning of the Physicochenical System of Regulation of Lipid Peroxidation in Biological Objects of Different Degree of Complexity in Norm and Under Effect of Damaging Factors, Doctorate Sci. Dissertation, Moscow, 2003.

  19. Shishkina, L.N. and Khrustova, N.V., Kinetic Characteristics of Lipids in Mammalian Tissues in Autooxidation Reactions, Biofizika, 2006, vol. 51, pp. 340–346.

    CAS  PubMed  Google Scholar 

  20. Menshov, V.A., Shishkina, L.N., and Kishkovskii, Z.N., Methyloleate Model in Investigations of the Mechanism of Regulatory Interactions of Lipids from Natural Sorbents and Environment, Prikl. Biokhim. Mikrobiol., 1994, vol. 30, pp. 632–640.

    CAS  Google Scholar 

  21. Prokazova, N.V., Zvezdina, N.D., and Korotaeva, A.A., Effect of Lysophosphatidylcholine on Transduction of Transmembrane Signal inside the Cell, Biokhimiya, 1998, vol. 63, pp. 38–46.

    Google Scholar 

  22. Kunshin, A.A., Zirkin, V.I., and Prokazova, N.V., Effect of Lysophosphtidylcholine, Phosphatidylcholine, and Chicken Egg Yolk on the Contractile Effects of Acetylcholine in Experiments with Smooth Muscles of Rat Stomach, Byull. Exp. Biol. Med., 2007, vol. 143, pp. 604–607.

    Google Scholar 

  23. Tekuchest’ membrany v biologii: kontseptsiya membrannoi struktury (Membrane Fluidity in Biology: Concept of Membrane Structure), Elloya, R., Ed., Kiev, 1989.

  24. Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., and Slotte, J.P., Cholesterol Interaction with Phospholipids in Membranes, Progr. Lipid Res., 2002, vol. 41, pp. 66–97.

    Article  CAS  Google Scholar 

  25. Ipatova, O.M., Torchovskaya, T.I., Zacharova, T.S., and Khalilov, E.M., Sphingolipids and Cellular Signaling: Participation in Apoptosis and Atherogenesis, Biokhimiya, 2006, vol. 71, pp. 882–893.

    Google Scholar 

  26. Dyatlovitskaya, E.V., Sphingolipids and Malignant Growth, Biokhimiya, 1995, vol. 60, pp. 843–850.

    CAS  Google Scholar 

  27. Shevchenko, O.G., Zagorskaya, N.G., Kudyasheva, A.G., and Shishkina, L.N., Anti-Irradiation Properties of Ecdisteroid-Containing Preparations, Radiats. Biolog. Radioekol., 2007, vol. 47, pp. 501–508.

    CAS  Google Scholar 

  28. Lesnikova, L.N., Stress changes of Erythrocyte Physiological Properties and Their Correction with Extract from Tunic of the Purple Ascidia (Halocynthia aurantium): Candidate Sci. Dissertation, Vladivostok, 2006.

  29. Sujn, M., Davila, M., and Poleo, G., Phosphatidylethanol Stimulates the Plasma Membrane Calcium Pump from Human Erythrocytes, Biochem. J., 1996, vol. 317, pp. 933–938.

    Google Scholar 

  30. Takakuva, Y., Regulation of Red Cell Membrane Protein Interactions: Implications for Red Cell Function, Curr. Opin. Hematol., 2001, vol. 8, no. 2, pp. 80–84.

    Article  Google Scholar 

  31. Kuzmina, Yu.V., Kaplun, A.P., and Shvets, V.I., Immunochemistry of Phospholipids, Biol. Membrany, 1991, vol. 8, pp. 1013–1027.

    CAS  Google Scholar 

  32. Kalnova, N.Yu., and Palmina, N.P., A Change of Phospholipid Composition and Antioxidative Activity of Erythrocyte Lipids in Breast Tumors and Their Radiation Treatment, Biokhimiya, 1980, vol. 45, pp. 1646–1653.

    Google Scholar 

  33. Wustner, D., Pomorski, T., Hermann, A., and Muller, P., Release of Phospholipids from Erythrocyte Membranes by Taurocholate Is Determined by their Transbilayer Orientation and Hydrophobic Backione, Biochemistry, 1998, vol. 37, pp. 17 093–17 104.

    Article  CAS  Google Scholar 

  34. Polyakova, N.V. and Shishkina, L.N., Action of γ-Radiation of Different Power on Processes of Lipid Peroxidation in Mouse Tissues, Radiat. Biol. Radioekol., 1995, vol. 35, pp. 181–188.

    CAS  Google Scholar 

  35. Brokerhoff, H. and Jensen, R., Lipoliticheskie fermenty (Lipolytic Enzymes), Moscow, 1978.

  36. Goni, F.M. and Alonso, A., Structure and Functional Properties of Diacyl-Glycerols in Membranes, Prog. Lipid Res., 1999, vol. 38, pp. 1–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O. G. Shevchenko, L. N. Shishkina, 2010, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2010, Vol. 46, No. 1, pp. 37–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, O.G., Shishkina, L.N. Phospholipid composition of blood erythrocytes of tundra voles (Microtus oeconomus Pall.) inhabiting under different radioecological conditions. J Evol Biochem Phys 46, 44–52 (2010). https://doi.org/10.1134/S0022093010010056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093010010056

Key words

Navigation