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Curved One-Dimensional Wire as a Spin Rotator
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(Dated: March 26, 2018)

We propose a semiconductor structure that can rotate the electron spin without using ferromag-
netic contacts, tunneling barriers, external radiation etc. The structure consists of a strongly curved
one-dimensional ballistic wire with intrinsic spin-orbit interactions of Rashba type. Our calculations
and analytical formulae show that the proposed device can redistribute the current densities between
the two spin-split modes without backscattering and, thus, serve as a reflectionless and high-speed
spin switcher. Using parameters relevant for InAs we investigate the projection of current den-
sity spin polarization on the spin-quantization axis as a function of the Rashba constant, external
magnetic field, and radius of the wire’s curvature.

PACS numbers: 73.63.Nm

I. INTRODUCTION

In the past few years the idea to use electron spin in
mesoscopic semiconductor devices has generated a lot of
interest. Datta and Das1 describe how Rashba effect2

(with the assistance of spin-filtering contacts) can be used
to modulate the current. The basic idea is that the spin
precession can be controlled via Rashba spin-orbit cou-
pling associated with the interfacial electric field present
in the quantum well that contains a two-dimensional elec-
tron gas. One of the most promising materials for this
purpose is the InAs semiconductors, where the tuning
of the Rashba coupling by an external gate voltage was
recently achieved by Grundler3 and Matsuyama et al.4

The schematic of the “conventional” spin-rotator based
on Rashba effect is depicted in Fig. 1a. The straight
quantum wire (or just a two-dimensional stripe) is di-
vided into three regions. In the middle region of the
length L the spin-orbit interactions are finite at the semi-
conductor interface, whereas in the input and output
channels the spin-orbit coupling is set to zero. In other
words, the semiconductor interface at which the Rashba
effect occurs does not extend into the regions connected
to the ferromagnetic source and drain5. The angle of
the spin rotation depends explicitely on the length of the
stripe between the input and output contacts, namely

∆ϑ =
2m∗αL

~2
, (1)

where m∗ is the effective electron mass, α is the Rashba
constant.
Let us estimate the spin-switching speed of this de-

vice in the ballistic transport regime. In other words, we
need the minimal time necessary to rotate the spin for
the angle of ∆ϑ = π. We take the parameters relevant
for InAs, i. e. Rashba constant is α = 2 · 10−11eVm,
whereas the effective electron mass is m∗ = 0.033me.
Then, the characteristic length of the “active” region nec-
essary to rotate the electron spin to its opposite direction
is equal to ∼ 10−5cm. Assuming the characteristic ve-
locity 5 · 107cm/s we have, that the cycle time is 0.2ps
that corresponds to 5 THz. Thus, the hypothetical spin-

tronic transistor might be one thousand times faster than
conventional one.

In spite of the impressive advantages, the abovemen-
tioned schema involves propagation of electrons across
borders separating the media with different spin-orbit
coupling strength. A reflection on the border is thus
a necessary complement that diminishes the total cur-
rent through the device and even might compromise the
feasibility of the proposal. In this paper, we propose a
scheme of the reflectionless spin-rotator made of material
with Rashba spin-orbit interaction such as InAs. We con-
sider a curved wire consisting of a semicircle with radius
R attached to the infinite straight one-dimensional chan-
nels, as shown in Fig. 1b. The channels are made of the
same material as the semicircle itself, thus, the electron
backscattering is negligible. Moreover, because of spe-
cific geometry of the system, the speed of response can
even exceed the one for the “conventional” spin-rotator
discussed above. The device is placed in a perpendicu-
lar magnetic field B, which can be used to control the
spin-rotation (in addition to the gate-voltage). Curved
one-dimensional quantum channels in InAs6 are expected
to be used for the experimental check of the present pro-
posal. The spin polarized electrons necessary for such
experiments can be generated in InAs by circularly po-
larized light7,8. Note, that the recombination of spin po-
larized charged carriers results in the emission of circu-
larly polarized light. It is possible, therefore, to use the
optical methods for the detection of the spin-polarization
as well.

On the face of it, the device depicted in Fig. 1 is sim-
ilar to the one investigated by Bulgakov and Sadreev9.
However, there is an essential difference in approaches
used here and in Ref.9. In that work, the authors assume
a priory the adiabatic regime: the radius of the curva-
ture is so large that the electrons do not feel the junction
between the curved part of the wire and input/output
channels. In contrast, we start from the very general so-
lution of Schrödinger equation for the whole system (i.
e. input channel — semi-circle — output channel) and
find that though the electron backscattering is still neg-
ligible, the redistribution between current densities with
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FIG. 1: (a) Schematic of the “conventional” spin-rotator.
In the central region of the wire the spin-orbit interaction is
finite, whereas in the input and output channels the Rashba
effect vanishes. (b) Schematic of the reflectionless and high-
speed spin-rotator. The quantum wire is made of just one
material so, that the Rashba constant in the curved part is
the same as in the input and output channels.

opposite spin indices can occur at certain comparatively
small radii of curvature (that is forwardscattering in some
sense).
In order to describe the degree of the current density

redistribution between the modes with opposite spin in-
dices we introduce the following quantity

P =
j+ − j−

j+ + j−
, (2)

where j± denote the current densities10 with a given spin
orientation, and “±” are the spin indices. It seems es-
sential to emphasize that the quantity P is controllable
experimentally since the currents j+ and j− can be gen-
erated and detected independently by means of absorp-
tion of two circularly polarized light beams with opposite
helicity7,8.
If one prefers to control P by means of magnetized

contacts then the situation is a bit more complicated.
Indeed, the quantity P has the meaning of projection
of the current density spin-polarization on the spin-
quantization axis whose orientation is determined by the
relation between the external magnetic field B and in-
plane Zeeman-like magnetic field Bin generated by the
Rashba spin-orbit interactions

Bin =
2αk0
g∗µB

. (3)

Here k0 is the characteristic Fermi wave vector, whereas
g∗ and µB being g-factor and Bohr magneton respec-
tively. The field Bin is orthogonal to the direction of the
electron motion, therefore the spin-quantization axis lies
in the yz plane (for the input and output channels). The
angle γ0 between the z axis and the spin-quantization
one can be found from the simple trigonometric formula

tan γ0 =
Bin

|B| . (4)

If the external magnetic field |B| = Bz is much larger
than the in-plane one, then the spin-quantization axis co-
incides with z axis. In contrast, if the external magnetic
field is absent then the spin-quantization axis is orthogo-
nal to the direction of the electron motion at each point
of its trajectory. In the following, we call the quantity P
defined by (2) just spin-polarization.
In the next sections we outline our calculation of the

current density spin-polarization and discuss the results
obtained.

II. GENERAL SOLUTION

We calculate single particle spin-split states for the sys-
tem shown in Fig. 1b. To this end, we divide the wire
in three parts: input channel, semi-circle (curved part
of the quantum wire) and output channel. We use the
cartesian coordinates to describe the input and output
channels (the region x < 0 in Fig. 1b) and the polar co-
ordinates for the description of the curved part of the
wire (the semi-circle). The Hamiltonians describing the
propagation of an electron in the input/output wires read

Hwire =

(

~
2

2m∗
k̂2x + εZ iα k̂x

−iα k̂x ~
2

2m∗
k̂2x − εZ

)

(5)

whereas the propagation through the semi-circle of radius
R is governed by the Hamiltonian11

Hcurv =

(

ε0 q̂
2
ϕ + εZ α e−iϕ

(

q̂ϕ − 1
2

)

/R
α eiϕ

(

q̂ϕ + 1
2

)

/R ε0 q̂
2
ϕ − εZ

)

.

(6)

Here k̂x = −i ∂
∂x − Φ

Φ0

1
R , q̂ϕ = −i ∂

∂ϕ − Φ
Φ0

are the

momentum and the angular momentum operators re-
spectively, Φ = π R2Bz is a magnetic flux through the
area of a ring of radius R, Φ0 = 2π ~c/e is the flux
quantum, ε0 = ~

2/(2m∗R2) is the size confinement en-
ergy, εZ = g∗µBBz/2 is the Zeeman term. We adopt
the vector potential A to be tangential to the direc-
tion of the current. Thus, in the semi-circle we choose
A(x, y) = 1

2Bz (x j− y i), or, in cylindrical coordinates,
Aϕ(ϕ) = Φ/2πR, whereas the vector potential in the in-
put and output channels is determined by the continuity
condition at the junction point with the curved part of
the wire (x = 0, y = ±R); hence we have Ax = Φ/2πR.
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We denote the wave functions for each part as Ψ±
curv(ϕ)

for the semi-circle, Ψ±

in(x) and Ψ±

out(x) for the input and
the output channels respectively. In order to find the
wave function of the whole system, we impose boundary
conditions that warrant the continuity of the wave func-
tion and its first derivative on the boundaries between
the parts of the wire















(

Ψ+
in +Ψ−

in

)

|x=0 = (Ψ+
curv +Ψ−

curv) |ϕ=−π/2,
(Ψ+

curv +Ψ−
curv) |ϕ=π/2 =

(

Ψ+
out +Ψ−

out

)

|x=0,
(

∇Ψ+
in +∇Ψ−

in

)

|x=0 = (∇Ψ+
curv +∇Ψ−

curv) |ϕ=−π/2,
(∇Ψ+

curv +∇Ψ−
curv) |ϕ=π/2 =

(

∇Ψ+
out +∇Ψ−

out

)

|x=0.
(7)

Solutions of Schrödinger equations for Hamiltonians (5),
(6) give us the desired spinor wave functions for the input,
output and curved parts of the system. For the input
channel we have

Ψ+
in(x) = e

iΦ
Φ0R

x





cos γ+
(

A+
0 e

iθ++ik+x +A+e−ik+x
)

−i sin γ+
(

A+
0 e

iθ++ik+x −A+e−ik+x
)



 ,

(8)

Ψ−

in(x) = e
iΦ

Φ0R
x





−i sin γ−
(

A−

0 e
iθ−+ik−x −A−e−ik−x

)

cos γ−
(

A−

0 e
iθ−+ik−x +A−e−ik−x

)



 ,

(9)
where

tan γ± = − εZ
k± α

+

√

1 +
( εZ
k± α

)2

. (10)

Here θ± are the initial phases, and k± are the Fermi wave
vectors that satisfy the dispersion relations

EF =
~
2k±

2

2m∗
±
√

α2k±2 + ε2Z , (11)

where EF is the Fermi energy. In the case of zero mag-
netic field (εZ = 0), the Fermi momenta k± take the
simple form

k± = ∓m
∗ α

~2
+ k0, (12)

where k0 =

√

(m∗ α/~2)
2
+ 2m∗EF /~2. The coefficients

A± are the reflection amplitudes that have to be found
by imposing the boundary conditions (7), whereas A±

0

are the incident ones.
For the output channel the reflection amplitudes are

assumed to be zero, and the corresponding spinors read

Ψ+
out(x) =

(

D+ cos γ+e
i(k++ Φ

Φ0R
)x

iD+ sin γ+ei(k
++ Φ

Φ0R
)x

)

, (13)

Ψ−

out(x) =

(

iD− sin γ−e
i(k−+ Φ

Φ0R
)x

D− cos γ−ei(k
−+ Φ

Φ0R
)x

)

. (14)

Here D± are the transmission amplitudes. We have
changed the sign of γ± for the output wire since the elec-
tron motion changes its direction to the opposite one.
The eigenfunctions of the Hamiltonian (6) have a view

Ψ+
curv(ϕ) = ei

Φ
Φ0

ϕ

(

B+ cosα+ei(q
+

R
−

1
2
)ϕ + C+ cosβ+e−i( 1

2
+q+

L
)ϕ

B+ sinα+ei(
1
2
+q+

R
)ϕ − C+ sinβ+e−i(q+

L
−

1
2
)ϕ

)

, (15)

Ψ−

curv(ϕ) = ei
Φ
Φ0

ϕ

(

−B− sinα−ei(q
−

R
−

1
2
)ϕ + C− sinβ−e−i( 1

2
+q−

L
)ϕ

B− cosα−ei(
1
2
+q−

R
)ϕ + C− cosβ−e−i(q−

L
−

1
2
)ϕ

)

, (16)

where

tanα± =
ε0q

±

R − εZ

q±R α/R
+

√

1 +

(

εZ − ε0q
±

R

q±R α/R

)2

, (17)

tanβ± = −ε0q
±

L + εZ

q±L α/R
+

√

1 +

(

εZ + ε0q
±

L

q±L α/R

)2

, (18)

and q±R,L are the Fermi angular momenta in the curved
part of the wire that are found from the conditions

EF =
ε0
4

+ ε0q
±

R

2 ±

√

(

q±R α

R

)2

+
(

q±R ε0 − εZ
)2
, (19)

EF =
ε0
4

+ ε0q
±

L

2 ±

√

(

q±L α

R

)2

+
(

q±L ε0 + εZ
)2
. (20)

If the Zeeman effect is negligible, then the equations (19)
and (20) allow the simple analytical solution with respect
to q±R,L

q±/R = ∓m
∗ α

~2

√

1 +

(

~2

2αm∗R

)2

+ k0. (21)

Note, that the chirality index is omitted in (21), since
q±R = q±L .



4

Imposing the boundary conditions (7) on the wave
functions (8), (9), (13) – (16) we obtain a solution of the
Schrödinger equation for the whole system. At this point
it is pertinent to turn to the calculation of the current
densities. Using foregoing results one can easily find the
input, reflected and transmitted current densities. Each
current density is given as a sum of its two spin-polarized
parts j = j+ + j−, where the components j± read

j±in =
~

m∗
|A±

0 |2
[

k± ± αm∗

~2
sin(2γ±)

]

, (22)

j±refl = − ~

m∗
|A±|2

[

k± ± αm∗

~2
sin(2γ±)

]

, (23)

j±out =
~

m∗
|D±|2

[

k± ± αm∗

~2
sin(2γ±)

]

. (24)

The transmission probability is defined as T = jout/jin,
and the reflection one as R = jrefl/jin. The general so-
lution gives T = 1 and R = 0, which means that there
is no particle backscattering. However, there is a current
density redistribution between j+out and j

−

out, which leads
to the change of spin-polarization in the output current.
Some particular solutions of the system (7) will be dis-
cussed in the next section.

III. DISCUSSION

In this section we discuss two cases: (i) the input po-
larization is zero Pin = 0, and (ii) Pin = 1. Note, that
in accordance with the definition (2) the case Pin = 0
does not mean that the incident electron beam is not
spin-polarized at all, it rather means that the projection

of the spin polarization on the spin-quantization axis is
zero.

A. Pin = 0

In this subsection we assume, that A+
0 = A−

0 . The gen-
eral solution of the system (7) is very cumbersome, thus,
we find the analytical expressions for the amplitudes A±,
B±, C±, D± in two limiting cases. First, we assume zero
external magnetic field (εZ = 0, Φ = 0) and the adiabatic
regime for the spin precession ~

2/(2m∗Rα) ≪ 1. In this
case, one can adopt γ± = α± = β± = π/4, and the sys-
tem of equations (7) takes a simpler form (37). Note,
that k± = q±R/R = q±L /R as long as ~

2/(2m∗Rα) ≪ 1,
as it follows from the relations (12) and (21). There-
fore, the solution of (37) is rather trivial in this case:
|A+|2 = |A−|2 = 0, and |D+|2 = |D−|2 = 1. Then, the
current densities read

jout =
~

m∗

∑

±

(

k± ± αm∗

~2

)

, jin = jout, (25)
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FIG. 2: Polarization Pout (solid lines) and the interference
factor sin

[

π(q−
R
− q+

R
)
]

(dashed lines) versus radius of curva-

ture at zero magnetic field. The initial phases θ± both are
equal to zero, Pin = 0, and the other parameters are taken rel-
evant for InAs: α = 2 · 10−11eVm, m∗ = 0.033me, g

∗ = −12,
EF = 30meV.

and the polarization is

Pout =
k+ − k− + 2αm∗/~2

k+ + k−
. (26)

Recall, that k+ − k− = −2αm∗/~2 at Bz = 0. Thus,
Pout = 0 for any values of α.
In contrast to that, if we assume the strongly

non-adiabatic regime for the spin precession so, that
~
2/(2m∗Rα) ≫ 1, then at zero external magnetic field

we still have γ± = π/4, but α± = π/2 and β± = 0. In
this case, the system of equations (7) takes the form (38),
and the approximate solution reads

A+ = 0, A− = 0,

B+ =
1√
2

(

eiθ
− − i eiθ

+
)

e
i π

2 ( 1
2
+q+

R),

B− = − 1√
2

(

eiθ
+ − i eiθ

−

)

e
i π

2 (q−R−
1
2 ),

C+ = 0, C− = 0,

D+ =
eiθ

−

+ i eiθ
+

2i
ei π(q

−

R
−

1
2 ) +

eiθ
− − i eiθ

+

2i
ei π(q

+

R
+ 1

2 ),

D− =
eiθ

− − i eiθ
+

2
ei π(q

+

R
+ 1

2 ) − eiθ
−

+ i eiθ
+

2
ei π(q

−

R
−

1
2 ).

(27)

Then, |D±|2 = 1 ± cos (θ+ − θ−) sin
[

π
(

q−R − q+R
)]

, and
the spin components of the output current density read

j±out =
~ k0
m∗

{

1± cos
(

θ+ − θ−
)

sin
[

π
(

q−R − q+R
)]}

.

(28)
The spin components of the reflection current density j±refl
are equal to zero. Thus, R = 0 and T = 1, whereas the
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FIG. 3: Polarization Pout (solid lines) and the interference factor sin
[

π(q−
R
− q+

R
)
]

(dashed lines) versus external magnetic

field at different radii of curvature: (a) R = 10−4cm, (b) R = 5 · 10−5cm, (c) R = 10−5cm, (d) R = 5 · 10−6cm. The other
parameters are the same as in Fig. 2.

output polarization reads

Pout = cos
(

θ+ − θ−
)

sin
[

π
(

q−R − q+R
)]

. (29)

The relation (29) shows, that in strongly curved one-
dimensional wires the current density redistribution be-
tween the two spin-split modes is achievable. The results
of numerical calculations at θ± = 0 are summarized in
Figs. 2, 3. The dependences Pout(R) and Pout(Bz) are
given by solid curves. The dotted lines correspond to the
approximate expression (29). The strong correlation be-
tween the spin polarization and the interference factor is
clearly visible. Nevertheless, a few words of comment are
necessary here.
First, the polarization is not zero at Bz = 0. One can

see that from the Figs. 2, 3 or directly from (29). Second,
a plot of Pout as a function of Bz (R as well) yields an
oscillating curve. The oscillations have a natural expla-
nation if one follows the evolution of the wave function as
a particle propagates through the wire. Namely, after en-
tering into the curved part of the wire, the component of
the input wave function Ψ+

in propagates as a linear com-

bination of the modes Ψ+
curv and Ψ−

curv with the wave
vectors q+R and q−R respectively [see the approximate so-
lution (27)]. The same is true for the propagation of
the state Ψ−

in. Due to the interference between the two
propagated states at the output of the curved part, the
factor sin

[

π (q−R − q+R)
]

appears in the output spin po-
larization, which shows up as the oscillations in Pout(B)
and Pout(R).

Now we must say a few words about the influence of the
initial phase difference ∆θ = θ− − θ+ on the abovemen-
tioned effect. In general, the electron states in the reser-
voirs are not coherent and, therefore, the output current
densities j±out have to be averaged over the distribution of
random initial phases θ±. In order to model the degree
of decoherence we use rectangular distributions of width
w, 0 ≤ θ± ≤ w for θ±. The results are summarized
in Fig. 4. One can easily see, that initial decoherence
hampers the polarization. (A tiny polarization at strong
magnetic fields for completely decoherent case is due to
the Zeeman effect only.) Thus, these initial states must
be specially prepared in order to observe of the oscillating
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factor sin
[

π (q−R − q+R)
]

in the current density polariza-
tion. If the phase difference θ+ − θ− is not fixed in the
electron beam, then the observed polarization is always
zero.

We would like to emphasize, that the current density
redistribution between the two spin-split modes in the
curved part of the wire does not stem from the finite
curvature itself. In contrast, the change of the curva-
ture gives rise to the difference between the amplitudes
B+ and B− (or D+ and D−) and, therefore, leads to
the current density redistribution between the two spin-
split modes. Indeed, consider the electron momenta on
the Fermi level for the straight and curved regions of
the wire in the simplest case of zero external magnetic
field. The momenta k± and q± are given by (12) and
(21) respectively. The essential difference between the
electron momenta for the straight wire and the loop lies
in the radius dependent term ~

2/(2αm∗R) in q±. No-
tice, that k± = q±/R if R = ∞ (no wire bending).
In contrast, q+/R decreases (as compared with k+) and
q−/R increases (as compared with k−) as long as the
loop goes towards a kink of the wire R → 0. For all
that, the Fermi velocity vF = ~

2k0/m
∗ keeps the same

value in any part of the system, and the electron mo-
mentum changes in curved part of the wire in such a
way, that forward scattering from one spin-split mode
to another occurs. The latter leads to the interference
between them and shows up as the current density re-
distribution between j+out and j

−

out. One can think about
the wire bending as a changing of the initial Rashba pa-

rameter α to α

√

1 + [~2/(2αm∗R)]2 in the loop region.

Note, however, that in contrast to the actual change of
α, the change of the wire’s curvature does not affect the
electron density of states and results directly in the dif-
ference between q+ and q− so, that there is no problem
with the reflection. This is a very particular property of
the system: there is no barrier on the junction between
the straight and curved parts of the wire, but the Fermi
momenta have a jump, and, thus, the current density
redistribution between the spin-split modes takes place.

B. Pin = 1

In this section we propose to use a strongly curved
1D wire discussed above as a spin switcher, i. e. the
input current density polarization Pin is equal to 1, and
the output polarization can be switched to its opposite
value. Note, that in contrast to the previous case, the
phase coherence of initial electron states is not necessary
here.

The general solution of the system of equations (7)
at A+

0 = 1, A−

0 = 0 demonstrates zero backscattering
(R = 0 and T = 1), while the polarization curves exhibit
the following interesting features (see Fig. 5). First, the
plots of Pout(R) [as well as Pout(Bz)) yield oscillating
curves. Second, the efficiency of the spin-switching de-
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FIG. 4: Total output polarization Pout vs. magnetic field for
different distribution width w = max{θ±} that corresponds
to the different degree of decoherence. Curve (A) w = 2π
(completely decoherent states), (B) w = π, (C) w = π/2, (D)
w = 0 (completely coherent states). Radius of the semi-circle
is taken 5 · 10−6 cm, the other parameters are the same as in
four previous figures.

pends strongly on the direction of the external magnetic
field. Third, although the polarization can be switched to
its opposite value at Bz = 0, the relatively small radius of
the wire’s curvature is necessary. In order to explain the
features listed, we solve the system (7) in two cases again:
adiabatic ~

2/(2m∗Rα) ≪ 1 and strongly non-adiabatic
~
2/(2m∗Rα) ≫ 1 limits.
The first limit is, however, not really interesting. As

in the previous section, no current density redistribu-
tion between the two spin-split modes occurs here, i. e.
|D+|2 = 1 and |D−|2 = 0. Intuitively it is clear, that the
curved wire does not differ too much from the straight
one as long as ~

2/(2m∗Rα) ≪ 1. Therefore, the polar-
ization keeps its +100% initial value while the current
flows through the system.
In the opposite, strongly non-adiabatic limit, the situa-

tion changes drastically. Indeed, the system of equations
(7) at α± = π/2, β± = 0 and zero magnetic field allows
the following approximate solution

A+ = 0, A− = 0,

B+ = − i√
2
ei θ

++ i π

2 ( 1
2
+q+

R),

B− = − 1√
2
ei θ

++ i π

2 (q−R−
1
2 ),

C+ = 0, C− = 0,

D+ =
1

2
ei θ

+
[

ei π(q
−

R
−

1
2 ) − ei π(q

+

R
+ 1

2 )
]

,

D− =
1

2 i
ei θ

+
[

ei π(q
−

R
−

1
2 ) + ei π(q

+

R
+ 1

2 )
]

.

(30)

Then, |D±|2 = 1
2 ± 1

2 cos
[

π
(

q+R − q−R
)]

, and the spin



7

components of the output current density read

j±out =
~ k0
2m∗

{

1± cos
[

π
(

q−R − q+R
)]}

. (31)

Thus, the current density redistribution occurs in the
strongly non-adiabatic regime, and the polarization is

Pout = cos
[

π
(

q−R − q+R
)]

. (32)

Let us make some comments on (32). Note, that if
the radius of curvature is exactly equal to zero, then the
difference between the Fermi angular momenta reads

q−R − q+R =
2m∗Rα

~2

√

1 +

(

~2

2αm∗R

)2
∣

∣

∣

∣

∣

∣

R=0

= 1. (33)

Thus, the output polarization Pout = −1, whereas the
initial one was Pin = +1. Therefore, the polarization is
switched to its opposite value at R = 0 and Bz = 0 as it
is explained in what follows.
Let us have an electron beam with Pin = 1 which is

reflected by an infinite barrier. If the dynamical and spin
degrees of freedom are coupled by means of the Rashba
spin-orbit interactions then the reflected electron beam
has exactly the opposite polarization Prefl = −1. Indeed,
if the direction of the electron motion is perpendicular to
the barrier then a one-dimensional description is possible,
and the corresponding wave functions represent a sum of
incident and reflected waves [cf. with (8) and (9)]

ψ+(x) =
1√
2
eik

+x

(

1
−i

)

+
A+

√
2
e−ik+x

(

1
i

)

,

ψ−(x) =
A−

√
2
e−ik−x

(

i
1

)

. (34)

Then, we place an infinite barrier in the point x = 0.
Imposing zero boundary conditions on (34) we have the
following system of equations

{

1 +A+ + iA− = 0,
−i(1−A+) +A− = 0.

(35)

The solution of (35) is very simple and reads

A+ = 0, A− = i. (36)

Substituting the amplitudes (36) into (34), we come to
the conclusion, that due to the spin-orbit coupling the
reflected electron beam always has the spin-polarization
opposite to the initial one. Notice, that as soon as we
assume zero radius of the curved part in Fig. 1b we arrive
at the one-dimensional wire with an infinite barrier. The
finite radius and external magnetic field just gives some
additional effects depicted in Fig. 5.
The difference between the Fermi angular momenta

depends not only on the Rashba coupling, but on the
Zeeman splitting as well. Therefore, the critical values
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FIG. 5: Polarization Pout versus radius of curvature at differ-
ent external magnetic fields. The input polarization Pin = 1,
and the other parameters are taken the same as in Fig. 2.
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FIG. 6: Polarization Pout versus Rashba constant α at zero
external magnetic field. The input polarization is Pin = 1,
m∗ = 0.033me, EF = 30meV, and the radius of curvature is
(A) R = 2 · 10−5cm, (B) R = 10−5cm, (c) R = 5 · 10−6cm.
Such values of α and R are achievable experimentally in
InAs3,4,6.

of q−R − q+R , when the polarization P changes the sign,
are tunable by means of the external magnetic field.
Unfortunately, we do not have analytical formulae for
q±R,L at non-zero magnetic fields, but one can see the ef-
fect in Fig. 5. The most interesting curve is the one at
Bz = −5T, where almost -100% output spin polarization
is achieved at non-zero radius of the curvature.
Such a spin-switcher can be utilized in devices of

Datta-Das type1,5 as reflectionless and high-speed spin-
rotator. To complete the spin field effect transistor we
assume a spin polariser and a spin analyser at the ends of
the input and output channels. For the sake of simplicity,
let the spin polariser and spin analyser be transparent for
the same spin orientation. The basic principle of the de-
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vice proposed is similar to the “conventional” one. The
transistor is closed as long as the transport regime is adi-
abatic ~

2/(2αm∗R) ≤ 1, and the electron spin changes
its orientation with respect to the spin-orientation in the
contacts. In contrast, the spin-switching occurs as soon
as the electron spin does not have enough time to follow
the electron trajectory (non-adiabatic regime). Thus, the
spin-valve is opened when ~

2/(2αm∗R) ≫ 1. The rela-
tion ~

2/(2αm∗R) can be tuned by the gate-voltage de-
pendent Rashba constant α as it is discussed in Refs.3,4.
The plots of Pout(α, Pin = 1) are shown in Fig. 6 for dif-
ferent radii of curvature. The values of α are taken in
accordance with the experimental situation in InAs.3,4

In contrast to the “conventional” spin-rotators made of
the straight semiconductor stripes, the device proposed
is expected to operate faster since it works in the non-
adiabatic regime. Indeed, the switching speed is deter-
mined by the time needed for an electron to propagate
through the curved part of the system which can be very
short as long as our device is in the non-adiabatic regime
~
2/(2αm∗R) ≫ 1. Thus, the switching time can be even

smaller than the one estimated in the Introduction for,
let us say, a “conventional” spintronic device in the adi-
abatic regime.

IV. CONCLUSIONS

In this paper, we investigated the ballistic transport
in curved one-dimensional wires with intrinsic spin-orbit

interactions of Rashba type. In detail, the projection
of the current density spin-polarization on the spin-
quantization axis is considered.

The major points covered by this paper may be sum-
marized as follows (i) a strongly curved 1D wire with
Rashba spin-orbit coupling demonstrates current density
redistribution between the two spin-split modes with-
out backscattering, (ii) the current density redistribution
shows up in the projection of its output spin-polarization
on the spin-quantization axis defined by (2), (iii) strongly
curved 1D wires with Rashba spin-orbit coupling can
switch the spin-polarization of the input electron beam
to the opposite one.

In our opinion, the main outcome of this paper is that
strongly curved 1D wires with Rashba spin-orbit coupling
can serve in the capacity of reflectionless and high-speed
spin-switchers. We believe that the interplay between
Rashba spin-orbit coupling and non-zero curvature of the
one-dimensional system can find especially fruitful appli-
cations in spintronics.
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In Appendix, we adduce the system of equations solved above at zero external magnetic field in two limiting cases.
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Deep in the adiabatic regime the equations (7) read

(

A+
0 e

iθ+

+A+
)

− i
(

A−

0 e
iθ− −A−

)

= e−i π/4
(

B+e−i π q+
R
/2 + C+ei π q+

L
/2 −B−e−i π q−

R
/2 + C−ei π q−

L
/2
)

,
(

A−

0 e
iθ−

+A−

)

− i
(

A+
0 e

iθ+ −A+
)

= e−i π/4
(

B−e−i π q−
R
/2 + C−ei π q−

L
/2 +B+e−i π q+

R
/2 − C+ei π q+

L
/2
)

,

e−i π /4
(

B+ei π q+
R
/2 + C+e−i π q+

L
/2 −B−ei π q−

R
/2 + C−e−i π q−

L
/2
)

= D+ + iD−,

ei π/4
(

B−ei π q−
R
/2 + C−e−i π q−

L
/2 +B+ei π q+

R
/2 − C+e−i π q+

L
/2
)

= D− + iD+,

k+
(

A+
0 e

iθ+ −A+
)

− i k−
(

A−

0 e
iθ−

+A−

)

=
ei π/4

R

[

B+

(

q+R − 1

2

)

e−i π q+
R
/2−

−C+

(

1

2
+ q+L

)

ei π q+
L
/2 −B−

(

q−R − 1

2

)

e−i π q−
R
/2 − C−

(

1

2
+ q−L

)

ei π q−
L
/2

]

,

k−
(

A−

0 e
iθ− −A−

)

− ik+
(

A+
0 e

iθ+

+A+
)

=
e−i π/4

R

[

B−

(

1

2
+ q−R

)

e−i π q−
R
/2+

+C−

(

1

2
− q−L

)

ei π q−
L
/2 +B+

(

1

2
+ q+R

)

e−i π q+
R
/2 − C+

(

1

2
− q+L

)

ei π q+
L
/2

]

,

1

R
e−i π /4

[

B+

(

q+R − 1

2

)

ei π q+
R
/2 − C+

(

1

2
+ q+L

)

e−i π q+
L
/2−

− B−

(

q−R − 1

2

)

ei π q−
R
/2 − C−

(

1

2
+ q−L

)

e−i π q−
L
/2

]

= D+ k+ + iD− k−,

1

R
ei π/4

[

B−

(

1

2
+ q−R

)

ei π q−
R
/2 + C−

(

1

2
− q−L

)

e−i π q−
L
/2+

+ B+

(

1

2
+ q+R

)

ei π q+
R
/2 − C+

(

1

2
− q+L

)

e−i πq+
L
/2

]

= D− k− + iD+ k+.

(37)

In the opposite, strongly non-adiabatic limit the system of equations can be written as

1√
2

(

A+
0 e

iθ+

+A+
)

− i√
2

(

A−

0 e
iθ− −A−

)

= ei π/4
(

C+ei π q+
L
/2 −B−e−i π q−

R
/2
)

,

1√
2

(

A−

0 e
iθ−

+A−

)

− i√
2

(

A+
0 e

iθ+ −A+
)

= e−i π/4
(

C−ei π q−
L
/2 +B+e−i π q+

R
/2
)

,

e−i π/4
(

C+e−i π q+
L
/2 −B−ei π q−

R
/2
)

=
1√
2
D+ +

i√
2
D−,

ei π/4
(

C−e−i π q−
L
/2 +B+ei π q+

R
/2
)

=
1√
2
D− +

i√
2
D+,

1√
2
k+
(

A+
0 e

iθ+ −A+
)

− i√
2
k−
(

A−

0 e
iθ−

+A−

)

=

=
ei π/4

R

[

−C+

(

1

2
+ q+L

)

ei π q+
L
/2 −B−

(

q−R − 1

2

)

e−i π q−
R
/2

]

,

1√
2
k−
(

A−

0 e
iθ− −A−

)

− i√
2
k+
(

A+
0 e

iθ+

+ A+
)

=

=
e−i π/4

R

[

C−

(

1

2
− q−L

)

ei π q−
L
/2 +B+

(

1

2
+ q+R

)

e−i π q+
R
/2

]

,

1

R
e−i π /4

[

−C+

(

1

2
+ q+L

)

e−i π q+
L
/2 −B−

(

q−R − 1

2

)

ei π q−
R
/2

]

=
1√
2
D+ k+ +

i√
2
D− k−,

1

R
ei π/4

[

C−

(

1

2
− q−L

)

e−i π q−
L
/2 +B+

(

1

2
+ q+R

)

ei π q+
R
/2

]

=
1√
2
D− k− +

i√
2
D+ k+.

(38)
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