Skip to main content
Log in

Fabrication of flexible transparent conductive coatings based on single-walled carbon nanotubes

  • Published:
Inorganic Materials Aims and scope

Abstract

We have proposed a method for large-scale growth of thin nanotube films from solution on the surface of flexible, transparent substrates. Uniform nanotube deposition was achieved through the preparation of a stable colloidal nanotube solution in an aqueous surfactant solution. We examined the effect of the number of deposition cycles on the morphology of the films and their optical and electrical characteristics. The results demonstrate that the optical transmittance of the films decreases linearly with increasing film thickness, whereas their resistance decreases quadratically, which corresponds to three-dimensional nanotube percolation in the films. With increasing film thickness, the sheet resistance of the films drops from 400 to 15 kΩ/□ and their transmittance decreases from 85 to 40%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferrer-Anglada, N., Pérez-Puigdemont, J., Figueras, J., et al., Flexible, transparent electrodes using carbon nanotubes, Nanoscale Res. Lett., 2012, vol. 7, p. 571.

    Article  Google Scholar 

  2. Scardaci, V., Coull, R., and Coleman, J.N., Very thin transparent, conductive carbon nanotube films on flexible substrates, Appl. Phys. Lett., 2010, vol. 97, no. 2, paper 023 114.

    Google Scholar 

  3. Zikang, T. and Sheng, P., Nanoscale phenomena: Basic science to device applications, Ser.: Lecture Notes Nanoscale Sci. Technol., 2008, vol. 2, no. 14, p. 248.

    Google Scholar 

  4. Han, J.T., Kim, J.S., Lee, S.G., et al., Chemical strainrelaxation of single-walled carbon nanotubes on plastic substrates for enhanced conductivity, J. Phys. Chem. C, 2011, vol. 115, no. 45, p. 22 251.

    Article  CAS  Google Scholar 

  5. Zhang, J., Gao, L., Sun, J., et al., Dispersion of single-walled carbon nanotubes by Nafion in water/ethanol for preparing transparent conducting films, J. Phys. Chem., 2008, vol. 112, p. 16 370.

    CAS  Google Scholar 

  6. Saran, N., Parikh, K., Suh, D.S., et al., Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrate, J. Am. Chem. Soc., 2004, vol. 126, no. 14, p. 4462.

    Article  CAS  Google Scholar 

  7. Crouzier, T., Nimmagadda, A., Nollert, M.U., and McFetridge, P.S., Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions, Langmuir, 2008, vol. 24, p. 13 173.

    Article  CAS  Google Scholar 

  8. Xiaolin Li, Li Zhang, Xinran Wang, et al., Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials, J. Am. Chem. Soc., 2007, vol. 129, no. 16. p. 4890.

    Article  Google Scholar 

  9. Yan, Y.H., Chan-Park, M.B., and Zhang, Q., Advances in carbon-nanotube assembly, Small, 2007, vol. 3, no. 1, p. 24.

    Article  CAS  Google Scholar 

  10. Pham, D.T., Subbaraman, H., Chen, M.Y., et al., Selfaligned carbon nanotube thin-film transistors on flexible substrates with novel source-drain contact and multilayer metal interconnection, IEEE Trans. Nanotechnol., 2012, vol. 11, no. 1, p. 44.

    Article  Google Scholar 

  11. Pei, S., Du, J., Zeng, Y., et al., The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer, Nanotechnology, 2009, vol. 20, no. 23, p. 5707.

    Article  Google Scholar 

  12. Krestinin, A.V., Kiselev, N.A., Raevskii, A.V., and Ryabenko, A.G., Perspective of single-wall carbon nanotube production in the arc-discharge process, Eurasian Chem. Tech. J., 2003, vol. 5, no. 1, p. 7.

    CAS  Google Scholar 

  13. Dan, B., Irvin, G.C., and Pasquali, M., Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS Nano, 2009, vol. 3, no. 4, p. 835.

    Article  CAS  Google Scholar 

  14. Bobrinetskii, I.I. and Nevolin, V.K., Micromechanics of carbon nanotubes on substrates, Mikrosist. Tekh., 2002, no. 4, p. 20.

    Google Scholar 

  15. Mandal, H.S., Ward. A., and Tang, X., Transferable thin films of pristine carbon nanotubes, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 4, p. 3265.

    Article  CAS  Google Scholar 

  16. Hu, L., Hecht, D.S., and Gruner, G., Percolation in transparent and conducting carbon nanotube networks, Nano Lett., 2004, vol. 4, no. 12, p. 2513.

    Article  CAS  Google Scholar 

  17. Dressel, M. and Gruner, G., Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  18. Doherty, E.M., De, S., Lyons, E.P., et al., The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes, Carbon, 2009, vol. 47, no. 10, p. 2466.

    Article  CAS  Google Scholar 

  19. Zhou, Y., Hu, L., and Gruner, G., A method of printing carbon nanotube thin films, Appl. Phys. Lett., 2006, vol. 88, no. 3, paper 123 109.

    Google Scholar 

  20. Kim, C., Cakmak, M., and Zhou, X., Effect of composition on orientation, optical and mechanical properties of bi-axially drawn pen and pen/pei blend films, Polymer, 1998, vol. 39, no. 10, p. 4225.

    Article  CAS  Google Scholar 

  21. Borodko, Y., Jones, L., Lee, H., et al., Spectroscopic study of tetradecyltrimethylammonium bromide Pt-C14TAB nanoparticles: Structure and stability, Langmuir, 2009, vol. 25, no. 12, p. 6665.

    Article  CAS  Google Scholar 

  22. Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A., Raman spectroscopy of carbon nanotubes, Phys. Rep., 2004, vol. 409, no. 2, p. 47.

    Article  Google Scholar 

  23. Wang, Y., Yang, Z., Hou, Z., et al., Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection, Sens. Actuators, B, 2010, vol. 150, no. 2, p. 708.

    Article  CAS  Google Scholar 

  24. Lipomi, D.J., Vosgueritchian, M., Tee, B.C.-K., et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nat. Nanotechnol., 2011, vol. 6, no. 12, p. 788.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Nevolin.

Additional information

Original Russian Text © K.F. Akhmadishina, I.I. Bobrinetskii, R.A. Ibragimov, I.A. Komarov, A.M. Malovichko, V.K. Nevolin, V.A. Petukhov, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 1, pp. 28–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmadishina, K.F., Bobrinetskii, I.I., Ibragimov, R.A. et al. Fabrication of flexible transparent conductive coatings based on single-walled carbon nanotubes. Inorg Mater 50, 23–28 (2014). https://doi.org/10.1134/S0020168514010014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514010014

Keywords

Navigation