Skip to main content
Log in

On the Sum of Exponentials that Form Molecular Fluorescence Decay Kinetics

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The least squares method is commonly used to find the parameters and sum of exponentials that form molecular fluorescence decay kinetics. However, the method usually fails to lead to a global minimum of approximation, and more reliable methods are therefore necessary for finding the sum N of exponentials that form the fluorescence decay kinetics. If the sum of the exponentials is not greater than 8 and the signal-to-noise ratio is higher than a critical ratio, which depends on N, then it is possible to calculate the sum of exponentials that form fluorescence decay kinetics. A direct, noniterative method was developed to solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Holzwarth, Methods Enzymol. 246, 334 (1995).

    Article  Google Scholar 

  2. I. van Stokkum, Global and Target Analysis of Time-resolved Spectra (Vrije Universiteit, Amsterdam, 2005).

    Google Scholar 

  3. V. Pereyra and G. Scherer, Exponential Data Fitting (San Diego State Univ., San Diego, 2009).

    MATH  Google Scholar 

  4. C. Cabral, H. Imasato, J. Rosa, et al., Biophys. Chem. 97, 139 (2002).

    Article  Google Scholar 

  5. A. Alvarez and H. Lara, Opuscula Mathematica 31 (4), 481 (2011).

    Article  MathSciNet  Google Scholar 

  6. Z. Bajzer, A. Myers, S. Sedarous, and F. Prendergast, Biophys. J. 56, 79 (1989).

    Article  ADS  Google Scholar 

  7. D. Potts and M. Tasche, Signal Processing 90, 1631 (2010).

    Article  Google Scholar 

  8. V. Shuvalov and V. Klimov, Biochim. Biophys. Acta 440, 587 (1976).

    Article  Google Scholar 

  9. V. Godik and A. Borisov, Biochim. Biophys. Acta 548, 296 (1979).

    Article  Google Scholar 

  10. A. Klevanik, V. Klimov, and V. Shuvalov, Dokl. Akad. Nauk SSSR 236 (1), 241 (1977).

    Google Scholar 

  11. V. Klimov, A. Klevanik, V. Shuvalov, and A. Krasnovsky, FEBS Lett. 82 (2), 183 (1977).

    Article  Google Scholar 

  12. V. Klimov, S. Allakhverdiev, and V. Pashchenko, Dokl. Akad. Nauk SSSR 242, 1204 (1978).

    Google Scholar 

  13. V. Shuvalov, V. Klimov, E. Dollan, et al., FEBS Lett. 118, 279 (1980).

    Article  Google Scholar 

  14. V. Shuvalov, A. Klevanik, A. Sharkov, et al., FEBS Lett. 91, 135 (1978).

    Article  Google Scholar 

  15. V. Shuvalov and A. Klevanik, FEBS Lett. 160, 51 (1983).

    Article  Google Scholar 

  16. T. Arlt, S. Schmidt, W. Kaiser, et al., Proc. Natl. Acad. Sci. U. S. A. 90, 11 757 (1993).

    Article  Google Scholar 

  17. H. Huber, M. Meyer, H. Scheer, et al., Photosyn. Res. 55, 155 (1998).

    Article  Google Scholar 

  18. A. Klevanik, Dokl. Biochem. Biophys. 440, 234 (2011).

    Article  Google Scholar 

  19. A. Klevanik, Biol. Membrany 29 (3), 215 (2012).

    Google Scholar 

  20. F. R. Gantmacher, The Theory of Matrices (Nauka, Moscow, 1966; AMS Chelsea Publ., 2000).

  21. G. Golub and C. van Loan, Matrix Computations (Johns Hopkins Press, London, 1996).

    MATH  Google Scholar 

  22. V. Boss, Lectures in Mathematics. Linear Algebra (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

  23. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 2007).

    MATH  Google Scholar 

  24. E. Anderson, Z. Bai, C. Bischof, et al., LAPACK Users’ Guide (SIAM, Philadelphia, 1999).

    Book  MATH  Google Scholar 

  25. S. Marco, J. Palacin, and J. Samitier, IEEE. Trans. Instrum. Meas. 50 (3), 774 (2001).

    Article  Google Scholar 

  26. J. Szamosi and Z. Schelly, J. Comput. Chem. 5, 182 (1984).

    Article  Google Scholar 

  27. H. Nielsen, Multi-Exponential Fitting of Low-Field 1H NMR Data (Technical University Denmark, Lyngby, 2000).

    Google Scholar 

  28. R. Mahmoudvand and M. Zokaei, Chilean J. Statistics 3 (1), 43 (2012).

    MathSciNet  Google Scholar 

  29. J. Lakowicz, Topics in Fluorescence Spectroscopy (Kluwer, New York, 1999), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klevanik.

Additional information

Translated by T. Tkacheva

Abbreviations: rank, matrix rank; A \( \in \)n×m, matrix A belongs to a set of n × m real matrices; QR, orthogonal–triangular decomposition; SNR, signal-to-noise ratio (dB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klevanik, A.V. On the Sum of Exponentials that Form Molecular Fluorescence Decay Kinetics. BIOPHYSICS 63, 909–914 (2018). https://doi.org/10.1134/S0006350918060167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918060167

Keywords:

Navigation