Skip to main content
Log in

The Mechanisms and Time Factor of the Enzyme Structure of a Paleosoil

  • Discussions
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The data on the enzyme activity of paleosoils of archaeological sites are given. It is shown that the activity of phosphatases and urease in soils of ancient settlements is significantly higher than in modern soils: 1.5–2.0 times for urease and 7–15 times for phosphatase in some cultural layers of the Bronze Age. This is related to a large amount of organic material (garbage, rubbish, excrement, and urea), which entered the soil in ancient times and stimulated soil microorganisms to produce a greater amount of enzymes, whose high activity has been preserved for 4000 years. The location of the enzymes was determined by soil fumigation using chloroform and activation of extracellular enzymes by glycine. The release of intracellular enzymes as a result of fumigation caused a significant increase in phosphatase activity in modern soils and soils of ancient settlements in contrast to the virgin paleosoil of the Bronze Age. The treatment by glycine exerted a smaller effect on the activity of phosphatases, but caused a significant increase in urease activity. This may indicate the predominating extracellular localization of urease in paleosoils of ancient settlements, while phosphatase is characterized by both extra- and intracellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kh. Khaziev, Methods in Soil Enzymology (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  2. M. D. Triven, Immobilized Enzymes: An Introduction and Applications in Biotechnology (New York. Wiley, 1980; Mir, Moscow, 1983).

    Google Scholar 

  3. P. Nannipieri, E. Kandeler, and P. Ruggiero, in Enzymes in the Environment. Activity, Ecology and Applications, Ed. by R. G. Burns and R. P. Dick (New York, 2002), pp. 1–33.

  4. J. J. Skujins, Crit. Rev. Microbiol. 4, 383 (1976).

    Article  Google Scholar 

  5. T. E. Khomutova, T. S. Demkina, N. N. Kashirskaya, and V. A. Demkin, Euras. Soil Sci. 45 (4), 423 (2012).

    Article  ADS  Google Scholar 

  6. G. V. Dobrovol’skii, I. P. Bab’eva, L. G. Bogatyrev, et al., Structural and Functional Role of Soils and Soil Biota in the Biosphere (Institute of Soil Science, Moscow State Univ., 2003) [in Russian].

    Google Scholar 

  7. S. A. Sycheva, N. B. Leonova, A. L. Aleksandrovskii, et al., Natural Science Methods of Studies on Cultural Layers of Ancient Settlements (Moscow, 2004) [in Russian].

    Google Scholar 

  8. O. E. Marfenina, Anthropogenic Ecology of Soil Fungi (Moscow, 2005) [n Russian].

    Google Scholar 

  9. A. A. Gol’eva, Microbiomorphic Complexes in Natural and Anthropogenic Landscapes: Genesis, Geography, Informational Role (Institute of Geography, Moscow, 2008) [in Russian].

    Google Scholar 

  10. E. V. Chernysheva, A. V. Borisov, and D. S. Korobov, Biological Memory of Soils and Cultural Layers in Archaeological Landmarks (GEOS, Moscow, 2016) [in Russian].

    Google Scholar 

  11. A. V. Prokhorova and L. N. Plekhanova, Probl. Region. Ekol. No. 2, 67 (2016).

    Google Scholar 

  12. N. N. Kashirskaya and L. N. Plekhanova, in Paleosoils, Paleoecology, Paleoeconomy: Proceedings of All-Russia Scientific Conference, Ed. by A. V. Borisov, L. N. Plekhanova, and S. N. Udal’tsov (KMK, Pushchino, 2017), pp. 91–93.

  13. A. E. Sidorova, N. T. Levashova, A. A. Melnikova, and L. V. Yakovenko, Biophysics (Moscow) 60 (3), 466 (2015).

    Article  Google Scholar 

  14. R. G. Burns, Soil Biol. Biochem. 14, 423 (1982).

    Article  Google Scholar 

  15. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  16. T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, et al., Euras. Soil Sci. 43 (2), 194 (2010).

    Article  ADS  Google Scholar 

  17. G. N. Fedotov, G. V. Dobrovol’skii, V. I. Putlyaev, et al., Euras. Soil Sci. 39 (7), 738 (2006).

    Article  ADS  Google Scholar 

  18. T. B. Ermakova and E. P. Sergeev, in The Structure and Dynamics of Molecular Systems (Yalchik, 2002), Vol. 1, pp. 181–185 [in Russian].

    Google Scholar 

  19. V. V. Dobrovol’skii, Euras. Soil Sci. 37 (1), 24 (2004).

    Google Scholar 

  20. G. N. Kurochkina, D. L. Pinskiy, M. Hainos, et al., Agrokhimiya No. 10, 46 (2013).

    Google Scholar 

  21. G. N. Kurochkina, D. L. Pinskiy, G. N. Fedotov, et al., Euras. Soil Sci. 46 (8), 897 (2013).

    Article  ADS  Google Scholar 

  22. E. V. Durdenko, S. M. Kuznetsova, L. V. Basova, et al., Biophysics (Moscow) 56 (4), 618 (2011).

    Article  Google Scholar 

  23. K. Martinek, in Biotechnology, Ed. by A. A. Baev (Nauka, Moscow, 1984), pp. 93–102 [in Russian].

  24. T. A. Kovaleva, V. G. Artyukhov, O. M. Kozhokina, et al., Sorbts. Khromatogr. Protsessy 5 (5), 704 (2005).

    Google Scholar 

  25. V. A. Namiot, A. V. Batyanovskii, I. V. Filatov, et al., Biophysics (Moscow) 56 (4), 596 (2011).

    Article  Google Scholar 

  26. O. M. Poltorak and E. S. Chukhrai, Vestn. Mosk. Gos. Univ., Ser. 2: Khim. 11 (3), 133 (1970).

    Google Scholar 

  27. V. A. Namiot, A. V. Batyanovskii, I. V. Filatov, et al., Biophysics (Moscow) 61 (1), 47 (2016).

    Article  Google Scholar 

  28. S. McCracken and E. Meigher, Methods Enzymol. 135, 492 (1987).

    Article  Google Scholar 

  29. O. M. Poltorak and E. S. Chukhrai, Russ. J. Phys. Chem. A 76 (10), 1666 (2002).

    Google Scholar 

  30. E. S. Chukhrai and L. F. Atyaksheva, Russ. J. Phys. Chem. A 84 (5), 709 (2010).

    Article  Google Scholar 

  31. N. A. Kryazhevskikh, Candidate’s Dissertation in Biology (Moscow, 2013).

    Google Scholar 

  32. E. V. Demkina, E. F. Shanenko, Yu. A. Nikolaev and G. I. El’-Registan, Microbiology (Moscow) 86 (2), 231 (2017).

    Article  Google Scholar 

  33. L. N. Plekhanova and V. V. Tkachev, Povolzhsk. Arkheol. 4 (6), 225 (2013).

    Google Scholar 

  34. E. Kandeler and H. Gerber, Biol. Fertil. Soils 6 (1), 68 (1988).

    Article  Google Scholar 

  35. A. Margon and F. Fornasier, Soil Biol. Biochem. 40, 2178 (2008).

    Article  Google Scholar 

  36. F. Fornasier, J. Ascher, M. T. Ceccherini, et al., Ecol. Indic. 45, 75 (2014).

    Article  Google Scholar 

  37. E. A. Dmitriev, Mathematical Statistics in Soil Science (Moscow State Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  38. P. C. Brookes, D. S. Powlson, and D. S. Jenkinson, Soil Biol. Biochem. 14, 319 (1982).

    Article  Google Scholar 

  39. N. N. Kashirskaya, T. E. Khomutova, V. V. Dmitriev, et al., Euras. Soil Sci. 43 (10), 1140 (2010).

    Article  ADS  Google Scholar 

  40. M. G. Kholyavka, T. A. Kovaleva, S. I. Karpov, et al., Biophysics (Moscow) 59 (2), 223 (2014).

    Article  Google Scholar 

  41. N. A. El’tekova, N. P. Sokolova, A. M. Gorbunov, and A. Yu. El’tekov, Prot. Met. Phys. Chem. Surf. 49 (4), 421 (2013). doi 10.7868/S0044185613040037

    Article  Google Scholar 

  42. F. Kh. Khaziev, Systemic Ecological Analysis of Soil Enzymatic Activity (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  43. J. E. Tomaszewski, R. P. Schwarzenbach, and M. Sander, Environ. Sci. Technol. 45, 6003 (2011).

    Article  ADS  Google Scholar 

  44. M. W. I. Schmidt, M. S. Torn, S. Abiven, et al., Nature 478, 49 (2011).

    Article  ADS  Google Scholar 

  45. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, Euras. Soil Sci. 46 (4), 355 (2013). doi 10.7868/S0032180X13040114

    Article  ADS  Google Scholar 

  46. M. Von Lützow, I. Kögel-Knabner, B. Ludwig, et al., J. Plant Nutr. Soil Sci. 171, 111 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kashirskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashirskaya, N.N., Plekhanova, L.N., Udaltsov, S.N. et al. The Mechanisms and Time Factor of the Enzyme Structure of a Paleosoil. BIOPHYSICS 62, 1022–1029 (2017). https://doi.org/10.1134/S0006350917060094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917060094

Keywords

Navigation