Skip to main content
Log in

Electrical signals in higher plants: Mechanisms of generation and propagation

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Local stimulation induces generation and propagation of electric signals in higher plants. Noninvasive stimulus induces an action potential and damaging influences lead to the variation potential. The mechanism of the generation of an action potential is rather complex in nature and is associated with both activation of ion channels (Ca2+, Cl, and K+) and transient change in the activity of the plasma membrane H+-ATPase. Generation of the variation potential, the duration of which is considerably longer than that of the action potential, is based on transient inactivation of the electrogenic pump; however, passive ion fluxes also contribute to such process, which causes qualitative similarity of the mechanisms of action potential and variation potential generation. Propagation of electrical signals mainly occurs in conducting bundles; thus, transfer of an action potential is associated with vascular parenchyma and sieve elements, while the variation potential is connected to the xylem vessels. The mechanism of the distribution the action potential is similar to nerve impulse transmission, while generation of the variation potential is induced by transfer of a chemical substance, whose propagation is accelerated by a hydraulic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP:

action potential

ES:

electric signals

VP:

variation potential

References

  1. R. Stahlberg, in Plant Electrophysiology. Theory and Methods, Ed. by V. Volkov (Springer, Berlin, 2006), pp. 3–14.

  2. D. Ch. Bos, Selected Studies on Excitability of Plants (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  3. A. M. Sinyukhin and E. A. Britikov, Nature 215, 1278 (1967).

    Article  ADS  Google Scholar 

  4. V. A. Opritov, S. S. Pyatygin, and V. G. Retivin, Bioelectrogenesis in Higher Plants (Nauka, Moscow) [in Russian].

  5. A. L. Houwink, Recueil Trav. Bot. Neerl. 32, 51 (1935).

    Google Scholar 

  6. E. Krol, H. Dziubinska, and K. Trebacz, in Action Potential, Ed. by M. L. DuBois (Nova Science Publishers, New York, 2010), pp. 1–26.

  7. M. R. Zimmermann, H. Maischak, A. Mithoefer, et al., Plant Physiol. 149, 1593 (2009).

    Article  Google Scholar 

  8. J. Fromm and S. Lautner, Plant Cell Environ. 30, 249 (2007).

    Article  Google Scholar 

  9. A. Pavlovic, L. Slovakova, C. Pandolfi, et al., J. Exp. Bot. 62, 1991 (2011).

    Article  Google Scholar 

  10. V. Sukhov, L. Orlova, S. Mysyagin, et al., Planta 235, 703 (2012).

    Article  Google Scholar 

  11. A. Gallé, S. Lautner, J. Flexas, et al., Environ. Exp. Bot. 114, 15 (2015).

    Article  Google Scholar 

  12. V. Sukhov, L. Surova, O. Sherstneva, et al., Funct. Plant Biol. 42, 727 (2015).

    Article  Google Scholar 

  13. A. A. Bulychev and A. V. Komarova, Biochemistry (Moscow) 79 (3), 273 (2014).

    Article  Google Scholar 

  14. K. Trebacz, H. Dziubinska, and E. Krol, in Electrical Signals in Long-Distance Communication in Plants, Ed. by F. Baluska, S. Mancuso, and D. Volkmann, (Springer, Berlin, 2006), pp. 277–290.

  15. E. Davies, in Plant Electrophysiology. Theory and Methods, Ed. by V. Volkov (Springer, Berlin, 2006), pp. 407–422.

  16. V. Vodeneev, E. Akinchits, and V. Sukhov, Plant Sign. Behav. 10, e1057365 (2015).

    Article  Google Scholar 

  17. R. Stahlberg, R. E. Cleland, and E. Van Volkenburgh, in Electrical Signals in Long-Distance Communication in Plants, Ed. by F. Baluska, S. Mancuso, and D. Volkmann (Springer, Berlin, 2006), pp. 291–308.

  18. J. I. Kourie, Plant Physiol. 106, 651 (1994).

    Google Scholar 

  19. V. Z. Lunevsky, O. M. Zherelova, I. Y. Vostrikov, et al., J. Membr. Biol. 72, 43 (1983).

    Article  Google Scholar 

  20. M. Tazawa and T. Shimmen, Int. Rev.Cytol. 109, 259 (1987).

    Article  Google Scholar 

  21. R. E. Williamson and C. C. Ashley, Nature 296, 647 (1982).

    Article  ADS  Google Scholar 

  22. V. A. Opritov and V. G. Retivin, Fiziol. Rast. 33, 447 (1986).

    Google Scholar 

  23. V. G. Retivin and V. A. Oprito, Fiziol. Rast. 29, 915 (1982).

    Google Scholar 

  24. J. Fromm and R. Spanswick, J. Exp. Bot. 44, 1119 (1993).

    Article  Google Scholar 

  25. J. Fromm and T. Bauer, J. Exp. Bot. 45, 463 (1994).

    Article  Google Scholar 

  26. H. H. Felle and M. R. Zimmermann, Planta 226, 203 (2007).

    Article  Google Scholar 

  27. E. Krol, H. Dziubinska, M. Stolarz, et al., Biol. Plant. 50, 411 (2006).

    Article  Google Scholar 

  28. E. Krol, H. Dziubinska, and K. Trebacz, Plant Cell Physiol. 44, 527 (2003).

    Article  Google Scholar 

  29. K. Trebacz, R. Tarnecki, and T. Zawadzki, Physiol. Plant. 75, 24 (1989).

    Article  Google Scholar 

  30. T. Iijima and T. Sibaoka, Plant Cell Physiol. 26, 1 (1985).

    Google Scholar 

  31. D. Hodick and A. Sievers, Planta 174, 8 (1988).

    Article  Google Scholar 

  32. E. Krol, H. Dziubinska, and K. Trebacz, Physiol. Plant. 120, 265 (2004).

    Article  Google Scholar 

  33. V. A. Opritov, S. S. Pyatygin, and V. A. Vodeneev, Russ. J. Plant Physiol. 49 (1), 142 (2002).

    Article  Google Scholar 

  34. V. A. Vodeneev, V. A. Opritov, and S. S. Pyatygin, Russ. J. Plant Physiol. 53 (4), 481 (2006).

    Article  Google Scholar 

  35. S. S. Pyatygin, V. A. Opritov, and V. A. Vodeneev, Russ. J. Plant Physiol. 55 (2), 285 (2008).

    Article  Google Scholar 

  36. P. De Nisi, M. Dell’Orto, L. Pirovano, et al., Planta 209, 187 (1999).

    Article  Google Scholar 

  37. V. Sukhov, V. Vodeneev, J. Membr. Biol. 232, 59 (2009).

    Article  Google Scholar 

  38. A. J. E. van Bel and A. C. U. Furch, J. B. Hafke et al., Plant Sci. 181, 325 (2011).

    Article  Google Scholar 

  39. G. Roblin and J. L. Bonnemain, Plant Cell Physiol. 26, 1273 (1985).

    Google Scholar 

  40. J. L. Julien, M. O. Desbiez, G. Dejaegher, et al., J. Exp. Bot. 42, 131 (1991).

    Article  Google Scholar 

  41. J. L. Julien and J. M. Frachisse, Can. J. Bot. 70, 1451 (1992).

    Article  Google Scholar 

  42. R. Stahlberg and D. J. Cosgrove, Planta 187, 523 (1992).

    Article  Google Scholar 

  43. M. Rousset, M. de Roo, J. Y. Le Guennec, et al., Physiol. Plant. 115, 197 (2002).

    Article  Google Scholar 

  44. V. A. Vodeneev, E. K. Akinchits, L. A. Orlova, and V. S. Sukhov, Russ. J. Plant Physiol. 58 (6), 974 (2011).

    Article  Google Scholar 

  45. R. Stahlberg and D. J. Cosgrove, Planta 200, 416 (1996).

    Article  Google Scholar 

  46. L. Katicheva, V. Sukhov, E. Akinchits, et al., Plant Cell Physiol. 55, 1511 (2014).

    Article  Google Scholar 

  47. V. Sukhov, O. Sherstneva, L. Surova, et al., Plant Cell Environ. 37, 2532 (2014).

    Article  Google Scholar 

  48. O. N. Sherstneva, V. A. Vodeneev, L. A. Katicheva, et al., Biochemistry (Moscow) 80 (6), 776 (2015).

    Article  Google Scholar 

  49. V. Sukhov, E. Akinchits, L. Katicheva, et al., J. Membr. Biol. 246, 287 (2013).

    Article  Google Scholar 

  50. M. R. Zimmermann and H. H. Felle, Planta 229, 539 (2009).

    Article  Google Scholar 

  51. D.-J. Zhao, Z.-Y. Wang, L. Huang, et al., Sci. Rep. 4, 5435 (2014).

    ADS  Google Scholar 

  52. E. Krol and K. Trebacz, Ann. Bot. 86, 449 (2000).

    Article  Google Scholar 

  53. L. Katicheva, V. Sukhov, A. Bushueva, et al., Plant Signal Behav. 10 (3), (2015).

    Google Scholar 

  54. M. J. Beilby, Int. Rev. Cyt. 257, 43 (2007).

    Article  Google Scholar 

  55. T. Sibaoka, Bot. Mag. (Tokyo) 104, 73 (1991).

    Article  Google Scholar 

  56. D.-J. Zhao, Y. Chen, Z.-Y. Wang, et al., Sci. Rep. 5, 13425 (2015).

    Article  ADS  Google Scholar 

  57. W. J. Lucas, A. Groover, R. Lichtenberger, et al., J. Integr. Plant Biol. 55, 294 (2013).

    Article  Google Scholar 

  58. H. Dziubinska, Acta Soc. Botan. Polon. 72, 309 (2003).

    Article  Google Scholar 

  59. A. G. Volkov, J. Electroanal. Chem. 483, 150 (2000).

    Article  Google Scholar 

  60. V. Sukhov, V. Nerush, L. Orlova, et al., J. Theor. Biol. 291, 47 (2011).

    Article  Google Scholar 

  61. V. S. Sukhov, V. N. Nerush, and V. A. Vodeneev, Komp’yut. Issled. Model. No. 3, 77 (2011).

    Google Scholar 

  62. S. Mancuso, Aust. J. Plant Physiol. 26, 55 (1999).

    Article  Google Scholar 

  63. R. Stahlberg and D. J. Cosgrove, Plant Physiol. 113, 209 (1997).

    Google Scholar 

  64. V. Vodeneev, A. Orlova, E. Morozova, et al., J. Plant Physiol. 169, 949 (2012).

    Article  Google Scholar 

  65. M. Malone, New Phytol. 128, 49 (1994).

    Article  Google Scholar 

  66. A. Roth, Plant Cell Environ. 19, 622 (1996).

    Article  Google Scholar 

  67. J. Fromm and W. Eschrich, J. Plant Physiol. 141, 673 (1993).

    Article  Google Scholar 

  68. J. Fromm, M.-R. Hajirezaei, V. K. Becker, et al., Front. Plant Sci. 4, 239 (2013).

    Article  Google Scholar 

  69. V. Sukhov, L. Surova, O. Sherstneva, et al., Physiol. Plant. 152, 773 (2014).

    Article  Google Scholar 

  70. T. E. E. Grams, S. Lautner, H. H. Felle, et al., Plant Cell Environ. 32, 319 (2009).

    Article  Google Scholar 

  71. N. A. Krupenina and A. A. Bulychev, Biochim. Biophys. Acta 1767, 781 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vodeneev.

Additional information

Original Russian Text © V.A. Vodeneev, L.A. Katicheva, V.S. Sukhov, 2016, published in Biofizika, 2016, Vol. 61, No. 3, pp. 598–606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodeneev, V.A., Katicheva, L.A. & Sukhov, V.S. Electrical signals in higher plants: Mechanisms of generation and propagation. BIOPHYSICS 61, 505–512 (2016). https://doi.org/10.1134/S0006350916030209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916030209

Keywords

Navigation