Skip to main content
Log in

Water state and diffusion through lipid bilayers: Effect of hydration degree

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The dependences of adsorbed water state (obtained from the variations in 1H NMR spectra with the angle between the bilayer normal and magnetic field direction) and water diffusion along the bilayer normal (measured using pulsed field gradient 1H NMR) on hydration degree have been studied in macroscopically oriented bilayers of dioleoylphosphatidylcholine. The angle dependences of the shape of NMR spectrum are qualitatively different only for water concentrations higher and lower than that achieved by hydration from saturated vapors (χeq, about 23%). At concentrations lower than χeq, all water in the sample either makes the hydration shells of the lipid polar heads or is in fast exchange with the shell water, so the spin-echo signal from water is detected only within a narrow range of angles close to the magic angle, 54.7°. At concentration exceeding χeq, the spin-echo signal from water is retained at all orientations, suggesting that a portion of water between bilayers (quasi-free water) slowly exchanges with water bound to the polar heads. There is an inverse dependence of the coefficient of water self-diffusion through the bilayer system on the hydration degree, which is described in the Tanner model with account of water self-diffusion in the hydrophobic part of the bilayer. Bilayer permeability, distribution coefficient of molecules between aqueous and lipid phases, and water self-diffusion coefficient in the hydrophobic region of the bilayer are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LC:

liquid-crystalline

PFG:

pulsed field gradient

DOPC:

1,2-dioleoyl-sn-glycero-3-phosphocholine

References

  1. R. Koynova and M. Caffrey, Biochim. Biophys. Acta 1376, 91 (1998).

    Google Scholar 

  2. A. S. Ulrich and A. Watts, Biophys. J. 66, 1441 (1994).

    ADS  Google Scholar 

  3. K. Hristova and S. H. White, Biophys. J. 74, 2419 (1998).

    ADS  Google Scholar 

  4. A. Filippov, G. Oradd, and G. Lindblom, Langmuir 19, 6397 (2003).

    Article  Google Scholar 

  5. R. J. Mashl, H. L. Scott, S. Subramaniam, and E. Jacobsson, Biophys. J. 81(6), 3005 (2001).

    Google Scholar 

  6. C. Faure, L. Bonakdar, and E. J. Dufourc, FEBS Lett. 405, 263 (1997).

    Article  Google Scholar 

  7. Z. Zhou, B. G. Sayer, D. W. Hughes., et al., Biophys. J. 76, 387 (1999).

    Google Scholar 

  8. F. Volke, S. Eisenblatter, J. Galle, and G. Klose, Chem. Phys. Lipids 70(2), 121 (1994).

    Article  Google Scholar 

  9. H. Bursing, S. Kundu, and P. Vohringer, J. Chem. Phys. 107, 2404 (2003).

    Google Scholar 

  10. A. Filippov, G. Oradd, and G. Lindblom, Biophys. J. 86, 891 (2004).

    ADS  Google Scholar 

  11. S. R. Wassall, Biophys. J. 71(5), 2724 (1996).

    ADS  Google Scholar 

  12. P. Wasterby, G. Oradd, and G. Lindblom, J. Magn. Res. 157, 156 (2002).

    Article  ADS  Google Scholar 

  13. S. Paula, A. G. Volkov, A. N. Van Hoek, et al., Biophys. J. 70, 339 (1996).

    Article  Google Scholar 

  14. J. Milhaud, Biochim. Biophys. Acta 1663, 19 (2004).

    Article  Google Scholar 

  15. D. Bemporad, C. Luttmann, and J. W. Essex, Biophys. J. 87, 1 (2004).

    Article  ADS  Google Scholar 

  16. T. H. Haines, FEBS Lett. 346, 115 (1994).

    Article  Google Scholar 

  17. M. Jansen and A. Blume, Biophys. J. 68, 997 (1995).

    ADS  Google Scholar 

  18. P. Jedlovszky and M. Mezei, J. Phys. Chem. B. 105, 3614 (2001).

    Article  Google Scholar 

  19. H. Leontiadou, A. E. Mark, and S. J. Marrink, Biophys. Chem. 86, 2156 (2004).

    Google Scholar 

  20. A. Finkelstein, Water movement through lipid bilayers, pores and plasma membranes. Theory and Reality Distinguished. Lecture Series of the Society of General Physiologists (John Willey, 1988), Vol. 4, pp. 1–228.

    Google Scholar 

  21. T. F. Weiss, Transport (The MIT Press, Cambridge, 1995).

    Google Scholar 

  22. M. A. Rudakova and A. V. Filippov, App. Magn. Res. 29, 451 (2005).

    Article  Google Scholar 

  23. M. A. Rudakova, A. V. Filippov, and R. S. Gimatdinov, Biofizika 50, 878 (2005).

    Google Scholar 

  24. G. Oradd and G. Lindblom, in NMR of orientationally ordered liquids, Ed. by E. Burnell (Kluwer Academic Pubnshers, Dordrecht, 2003), pp. 399–418.

    Google Scholar 

  25. A. Filippov, G. Oradd, and G. Lindblom, Biophys. J. 84(5), 3079 (2003).

    ADS  Google Scholar 

  26. P. N. Sen, Concepts of Magnetic Resonance 23A(1), 1 (2004).

    Article  Google Scholar 

  27. A. V. Filippov, M. A. Rudakova, G. Oradd, and G. Lindblom, Biofizika 52, (2007).

  28. A. Carruthers and D. L. Melchior, Biochemistry 22, 5797 (1983).

    Article  Google Scholar 

  29. J. E. Tanner, J. Chem. Phys. 69, 1748 (1978).

    Article  ADS  Google Scholar 

  30. S. Tristram-Nagle and J. F. Nagle, Chem. Phys. of Lipids 127, 3 (2004).

    Article  Google Scholar 

  31. M. Appel, G. Fleischer, D. Geschke, et al., Pulsedfield-gradient NMR analogue of the single-slit diffraction pattern.

  32. W. S. Price, Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1, Concepts of Magnetic Resonance 9, 299 (1997).

    Article  Google Scholar 

  33. D. Bemporad and J. W. Essex, J. Phys. Chem. 108, 4875 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Khakimov, M.A. Rudakova, A.V. Filippov, 2007, published in Biofizika, 2007, Vol. 52, No. 5, pp. 840–849.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khakimov, A.M., Rudakova, M.A. & Filippov, A.V. Water state and diffusion through lipid bilayers: Effect of hydration degree. BIOPHYSICS 52, 453–461 (2007). https://doi.org/10.1134/S0006350907050016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907050016

Key words

Navigation