Skip to main content
Log in

Anion-Specific Effects on the Alkaline State of Cytochrome c

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Specific effects of anions on the structure, thermal stability, and peroxidase activity of native (state III) and alkaline (state IV) cytochrome c (cyt c) have been studied by the UV-VIS absorbance spectroscopy, intrinsic tryptophan fluorescence, and circular dichroism. Thermal and isothermal denaturation monitored by the tryptophan fluorescence and circular dichroism, respectively, implied lower stability of cyt c state IV in comparison with the state III. The pKa value of alkaline isomerization of cyt c depended on the present salts, i.e., kosmotropic anions increased and chaotropic anions decreased pKa (Hofmeister effect on protein stability). The peroxidase activity of cyt c in the state III, measured by oxidation of guaiacol, showed clear dependence on the salt position in the Hofmeister series, while cyt c in the alkaline state lacked the peroxidase activity regardless of the type of anions present in the solution. The alkaline isomerization of cyt c in the presence of 8 M urea, measured by Trp59 fluorescence, implied an existence of a high-affinity non-native ligand for the heme iron even in a partially denatured protein conformation. The conformation of the cyt c alkaline state in 8 M urea was considerably modulated by the specific effect of anions. Based on the Trp59 fluorescence quenching upon titration to alkaline pH in 8 M urea and molecular dynamics simulation, we hypothesize that the Lys79 conformer is most likely the predominant alkaline conformer of cyt c. The high affinity of the sixth ligand for the heme iron is likely a reason of the lack of peroxidase activity of cyt c in the alkaline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

cyt c :

cytochrome c

GdmCl:

guanidium chloride

MD:

molecular dynamics

References

  1. Radi, R., Turrens, J. F., and Freeman, B. A. (1991) Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide, Arch. Biochem. Biophys., 288, 118-125, doi: https://doi.org/10.1016/0003-9861(91)90172-f.

    Article  CAS  PubMed  Google Scholar 

  2. Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E., and Passarella, S. (2000) Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death, J. Biol. Chem., 275, 37159-37166, doi: https://doi.org/10.1074/jbc.M002361200.

    Article  CAS  PubMed  Google Scholar 

  3. Paradies, G., Petrosilio, G., Pistolese, M., and Ruggiero, F. M. (2000) The effect of reactive oxygen species generated from the mitochondrial electron transfer chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles, FEBS Lett., 466, 323-326, doi: https://doi.org/10.1016/s0014-5793(00)01082-6.

    Article  CAS  PubMed  Google Scholar 

  4. Pereverzev, M. O., Vygodina, T. V., Konstantinov, A. A., and Skulachev, V. P. (2003) Cytochrome c, an ideal antioxidant, Biochem. Soc. Trans., 31, 1312-1315, doi: https://doi.org/10.1042/bst0311312.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell, 86, 147-157, doi: https://doi.org/10.1016/s0092-8674(00)80085-9.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, X., and Wang, X. (2004) Cytochrome c-mediated apoptosis, Annu. Rev. Biochem., 73, 87-106, doi: https://doi.org/10.1146/annurev.biochem.73.011303.073706.

    Article  CAS  PubMed  Google Scholar 

  7. Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., et al. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nat. Chem. Biol., 1, 223-232, doi: https://doi.org/10.1038/nchembio727.

    Article  CAS  PubMed  Google Scholar 

  8. Chapple, C. E., Robisson, B., Spinelli, L., Guien, C., Becker, E., and Brun, C. (2015) Extreme multifunctional proteins identified from a human protein interaction network, Nat. Commun., 6, 7412, doi: https://doi.org/10.1038/ncomms8412.

    Article  PubMed  PubMed Central  Google Scholar 

  9. González-Arzola, K., Velázquez-Cruz, A., Guerra-Castellano, A., Casado-Combreras, M. A., Pérez-Mejías, G., et al. (2019) New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus, FEBS Lett., 593, 3101-3119, doi: https://doi.org/10.1002/1873-3468.13655.

    Article  CAS  PubMed  Google Scholar 

  10. Cherney, M. M., and Bowler, B. E. (2011) Protein dynamics and function: making new strides with an old warhorse, the alkaline transition of cytochrome c, Coord. Chem. Rev., 255, 664-677, doi: https://doi.org/10.1016/j.ccr.2010.09.014.

    Article  CAS  Google Scholar 

  11. Hannibal, L., Tomasina, F., Capdevila, D. A., Demicheli, V., Tortora, V., et al. (2016) Alternative conformations of cytochrome c: structure, function, and detection, Biochemistry, 55, 407-428, doi: https://doi.org/10.1021/acs.biochem.5b01385.

    Article  CAS  PubMed  Google Scholar 

  12. Schweitzer-Stenner, R. (2018) Relating the multi-functionality of cytochrome c to membrane binding and structural conversion, Biophys. Rev., 10, 1151-1185, doi: https://doi.org/10.1007/s12551-018-0409-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Milorey, B., Schweitzer-Stenner, R., Kurbaj, R., and Malyshka, D. (2019) pH-induced switch between different modes of cytochrome c binding to cardiolipin-containing liposomes, ACS Omega, 4, 1386-14000, doi: https://doi.org/10.1021/acsomega.8b02574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maity, H., Rumbley, J. N., and Englander, S. W. (2006) Functional role of a protein foldon – an Ω-loop foldon controls the alkaline transition in ferricytochrome c, Proteins, 63, 349-355, doi: https://doi.org/10.1002/prot.20757.

    Article  CAS  PubMed  Google Scholar 

  15. Oviedo-Rouco, S., Castro, M. A., Alvarez-Paggi, D, Spedalieri, C., Tortora, V., et al. (2019) The alkaline transition of cytochrome c revisited: effects of electrostatic interactions and tyrosine nitration on the reaction dynamics, Arch. Biochem. Biophys., 665, 96-106, doi: https://doi.org/10.1016/j.abb.2019.02.016.

    Article  CAS  PubMed  Google Scholar 

  16. Oellerich, S., Waxckerbarth, H., and Hildebrandt, P. (2002) Spectroscopic characterization of nonnative conformational states of cytochrome c, J. Phys. Chem. B, 106, 6566-6580, doi: https://doi.org/10.1021/jp013841g.

    Article  CAS  Google Scholar 

  17. Alvarez-Paggi, D., Hannibal, L., Castro, M. A., Oviedo-Rouco, S., Demicheli, V., et al. (2017) Multifunctional cytochrome c: learning new tricks from an old dog, Chem. Rev., 117, 13382-13460, doi: https://doi.org/10.1021/acs.chemrev.7b00257.

    Article  CAS  PubMed  Google Scholar 

  18. Milazzo, L., Tognaccini, L., Howes, B. D., and Smulevich, G. (2018) Probing the non-native states of cytochrome c with resonance Raman spectroscopy: a tool for investigating the structure-function relationship, J. Raman. Spectrosc., 49, 1041-1055, doi: https://doi.org/10.1002/jrs.5315.

    Article  CAS  Google Scholar 

  19. Osheroff, N., Borden, D., Koppenol, W. H., and Margoliash, E. (1980) Electrostatic interactions in cytochrome c. The role of interactions between residues 13 and 90 and residues 79 and 47 in stabilizing the heme crevice structure, J. Biol. Chem., 255, 1689-1697.

    Article  CAS  Google Scholar 

  20. Moore, G. R., and Pettigrew, G. W. (1990) Cytochromes c: Evolutionary, Structural and Physicochemical Aspects, Springer-Verlag, New York.

  21. Pollock, W. B., Rosell, F. I., Twitchett, M. B., Dumont, M. E., and Mauk, A. G. (1998) Bacterial expression of a mitochondrial cytochrome c. Trimethylation of lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition, Biochemistry, 37, 6124-6131, doi: https://doi.org/10.1021/bi972188d.

    Article  CAS  PubMed  Google Scholar 

  22. Rosell, F. I., Ferrer, J. C., and Mauk, A. G. (1998) Proton-linked protein-conformational switching: definition of the alkaline conformational transition of yeast iso-1-ferricytochrome c, J. Am. Chem. Soc., 120, 11234-11245, doi: https://doi.org/10.1021/ja971756.

    Article  CAS  Google Scholar 

  23. Döpner, S., Hildebrandt, P., Rosell, F. I., and Mauk, A. G. (1998) Alkaline conformational transitions of ferricytochrome c studied by Resonance Raman spectroscopy, J. Am. Chem. Soc., 120, 11246-11255, doi: https://doi.org/10.1021/ja9717572.

    Article  Google Scholar 

  24. Krishna, M. M. G., Maity, H., Rumbley, J. N., Lin, Y., and Englander, S. W. (2006) Order of steps in the cytochrome c folding pathway: evidence for a sequential stabilization mechanism, J. Mol. Biol., 359, 1410-1419, doi: https://doi.org/10.1016/j.jmb.2006.04.035.

    Article  CAS  PubMed  Google Scholar 

  25. Assfalg, M., Bertini, I., Dolfi, A., Turano, P., Mauk, A. G., Rosell, F. I., and Gray, H. B. (2003) Structural model for an alkaline form of ferricytochrome c, J. Am. Chem. Soc., 125, 2913-2922, doi: https://doi.org/10.1021/ja027180s.

    Article  CAS  PubMed  Google Scholar 

  26. Amacher, J. F., Zhong, F., Lisi, G. P., Zhu, M. Q., Alden, S. L., et al. (2015) A compact structure of cytochrome c trapped in a lysine-ligated state: loop refolding and functional implications of a conformational switch, J. Am. Chem. Soc., 137, 8435-8449, doi: https://doi.org/10.1021/jacs.5b01493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis, L. A., Schejter, A., and Hess, G. P. (1974) Alkaline isomerization of oxidized cytochrome c. Equilibrium and kinetic measurements, J. Biol. Chem., 249, 2624-2632.

    Article  CAS  Google Scholar 

  28. Gadsby, P. M., Peterson, J., Foote, N., Greenwood, C., and Thomson, A. J. (1987) Identification of ligand-exchange process tn the alkaline transition of horse cytochrome c, Biochem. J., 246, 43-54, doi: https://doi.org/10.1042/bj2460043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson, C. J., and Bowler, B. E. (2000) pH dependence of formation of a partially unfolded state of a Lys73 → His variant of iso-1-cytochrome c: implications for the alkaline conformational transition of cytochrome c, Biochemistry, 39, 13584-13594, doi: https://doi.org/10.1021/bi0017778.

    Article  CAS  PubMed  Google Scholar 

  30. Hoang, L., Maity, H., Krishna, M. M. G., Lin, Y., and Englander, S. W. (2003) Folding units govern the cytochrome c alkaline transition, J. Mol. Biol., 331, 37-43, doi: https://doi.org/10.1016/s0022-2836(03)00698-3.

    Article  CAS  PubMed  Google Scholar 

  31. Weinkam, P., Zimmermann, J., Sagle, L. B., Matsuda, S., Dawson, P. E., et al. (2008) Characterization of alkaline transitions in ferricytochrome c using carbon-deuterium infrared probes, Biochemistry, 47, 13470-13480, doi: https://doi.org/10.1021/bi801223n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartshorn, R. T., and Moore, G. R. (1989) A denaturation-induced proton-uptake study of horse cytochrome c, Biochem. J., 258, 595-598, doi: https://doi.org/10.1042/bj2580595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosell, F. I., Harris, T. R., Hildebrand, D. P., Döpner, S., Hildebrandt, P., and Mauk, A. G. (2000) Characterization of an alkaline transition intermediate stabilized in the Phe82Trp variant of yeast iso-1-cytochrome c, Biochemistry, 39, 9047-9054, doi: https://doi.org/10.1021/bi001095k.

    Article  CAS  PubMed  Google Scholar 

  34. Silkstone, G. G., Cooper, C. E., Svistunenko, D., and Wilson, M. T. (2005) EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for inter-mediates in the alkaline transition, J. Am. Chem Soc., 127, 92-99, doi: https://doi.org/10.1021/ja045719b.

    Article  CAS  PubMed  Google Scholar 

  35. Verbaro, D., Hagarman, A., Soffer, J., and Schweitzer-Stenner, R. (2009) The pH dependence of the 695 nm charge transfer band reveals the population of an intermediate state of the alkaline transition of ferricytochrome c at low ion concentrations, Biochemistry, 48, 2990-2996, doi: https://doi.org/10.1021/bi802208f.

    Article  CAS  PubMed  Google Scholar 

  36. Bai, Y., Sosnick, T. R., Mayne, L., and Englander, S. W. (1995) Protein folding intermediates: native state hydrogen exchange, Science, 269, 192-197, doi: https://doi.org/10.1126/science.7618079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Godbole, S., and Bowler, B. E. (1999) Effect of pH on formation of a nativelike intermediate on the unfolding pathway of a Lys73→His variant of yeast iso-1-cytochrome c, Biochemistry, 38, 487-495, doi: https://doi.org/10.1021/bi981698k.

    Article  CAS  PubMed  Google Scholar 

  38. Nelson, C. J., LaConte, M. J., and Bowler, B. E. (2001) Direct detection of heat and cold denaturation for partial unfolding of a protein, J. Am. Chem. Soc., 123, 7453-7454, doi: https://doi.org/10.1021/ja016144a.

    Article  CAS  PubMed  Google Scholar 

  39. Weber, C., Michael, B., and Bosshard, H. R. (1987) Spectroscopic analysis of the cytochrome c oxidase-cytochrome c complex: circular dichroism and magnetic circular dichroism measurements reveal change of cytochrome c heme geometry imposed by complex formation, Proc. Natl. Acad. Sci. USA, 84, 6687-669, doi: https://doi.org/10.1073/pnas.84.19.6687.

    Article  CAS  PubMed  Google Scholar 

  40. Jemmerson, R., Liu, J., Hausauer, D., Lam, K. P., Mondino, A., and Nelson, R. D. (1999) A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles, Biochemistry, 38, 3599-3609, doi: https://doi.org/10.1021/bi9809268.

    Article  CAS  PubMed  Google Scholar 

  41. Abriata, L. A., Cassina, A., Tortora, V., Marin, M., Souza, J. M., et al. (2009) Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies, J. Biol. Chem., 284, 17-26, doi: https://doi.org/10.1074/jbc.M807203200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santucci, R., Sinibaldi, F., Patriarca, A., Santucci, D., and Fiorucci, L. (2010) Misfolded proteins and neurodegeneration: role of non-native cytochrome c in cell death, Expert Rev. Proteomics, 7, 507-5017, doi: https://doi.org/10.1586/epr.10.50.

    Article  CAS  PubMed  Google Scholar 

  43. Josephs, T. M., Liptak, M. D., Hughes, G., Lo, A., Smith, R. M., et al. (2013) Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination, J. Biol. Inorg. Chem., 18, 289-297, doi: https://doi.org/10.1007/s00775-012-0973-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liptak, M. D., Fagerlund, R. D., Ledgerwood, E. C., Wilbanks, S. M., and Bren, K. L. (2011) The proapoptotic G41S mutation to human cytochrome c alters the heme electronic structure and increases the electron self-exchange rate, J. Am. Chem. Soc., 133, 1153-1155, doi: https://doi.org/10.1021/ja106328k.

    Article  CAS  PubMed  Google Scholar 

  45. Karsisiotis, A. I., Deacon, O. M., Wilson, M. T., Macdonald, C., Blumenschein, T. M. A., et al. (2016) Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation, Sci. Rep., 6, 30447, doi: https://doi.org/10.1038/srep30447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Rocco, D., Cerqua, C., Goffrini, P., Russo, G., Pastore, A., et al. (2014) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics, Biochim. Biophys. Acta, 1842, 269-274, doi: https://doi.org/10.1016/j.bbadis.2013.12.002.

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Heredia, J. M., Diaz-Quintana, A., Salzano, M., Orzaez, M., Perez-Paya, E., et al. (2011) Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an ant-apoptotic switch, J. Biol. Inorg. Chem., 16, 1155-1168, doi: https://doi.org/10.1007/s00775-011-0804-9.

    Article  CAS  PubMed  Google Scholar 

  48. Capdevila, D., Alvarez-Paggi, D., Castro, M., Tortora, V., Demicheli, V., et al. (2014) Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c, Chem. Commun., 50, 2592-2594, doi: https://doi.org/10.1039/c3cc47207h.

    Article  CAS  Google Scholar 

  49. Josephs, T. M., Morison, I. M., Day, C. L., Wilbanks, S. M., and Ledgerwood, E. C. (2014) Enhancing the peroxidase activity of cytochrome c by mutation of residue 41: implications for peroxidase mechanism any cytochrome c release, Biochem. J., 458, 259-265, doi: https://doi.org/10.1042/BJ20131386.

    Article  CAS  PubMed  Google Scholar 

  50. Diederix, R. E., Ubbink, M., and Canters, G. W. (2001) The peroxidase activity of cytochrome c-550 from Paracoccus versutus, Eur. J. Biochem., 268, 4207-4216, doi: https://doi.org/10.1046/j.1432-1327.2001.02335.x.

    Article  CAS  PubMed  Google Scholar 

  51. Diederix, R. E., Ubbink, M., and Canters, G. W. (2002) Peroxidase activity as a tool for studying the folding of c-type cytochromes, Biochemistry, 41, 13067-13077, doi: https://doi.org/10.1021/bi0260841.

    Article  CAS  PubMed  Google Scholar 

  52. McClelland, L. J., Mou, T.-Ch., Jeakins-Cooley, M. E., Sprang, S. R., and Bowler, B. E. (2014) Structure of mitochondrial cytochrome c conformer competent for peroxidase activity, Proc. Natl. Acad. Sci. USA, 111, 6648-6653, doi: https://doi.org/10.1073/pnas.1323828111.

    Article  CAS  PubMed  Google Scholar 

  53. Battistuzzi, G., Borsari, M., Sola, M., and Francia, F. (1997) Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochrome c, Biochemistry, 36, 16247-16258, doi: https://doi.org/10.1021/bi971535g.

    Article  CAS  PubMed  Google Scholar 

  54. Millo, D., Bonifacio, A., Raineri, A., Borsari, M., Gooijer, C, and Van Der Zwan, G. (2007) pH-induced changes in absorbed cytochrome c. Voltammetric and surface-enhanced resonance Raman characterization performed simultaneously at chemically modified silver electrodes, Langmuir, 23, 9898-9904, doi: https://doi.org/10.1021/la701751r.

    Article  CAS  PubMed  Google Scholar 

  55. Capdevila, D. A., Oviedo Rouco, S., Tomasina, F., Torora, V., Demicheli, V., et al. (2015) Active site structure and peroxidase activity of oxidatively modified cytochrome c species in complexes with cardiolipin, Biochemistry, 54, 7491-7504, doi: https://doi.org/10.1021/acs.biochem.5b00922.

    Article  CAS  PubMed  Google Scholar 

  56. Deacon, O. M., Karsisiotis, A. I., Moreno-Chicano, T., Hough, M. A., Macdonald, C., et al. (2017) Heightened dynamics of the oxidized Y48H variant of human cytochrome c increases its peroxidatic activity, Biochemistry, 56, 6111-6124, doi: https://doi.org/10.1021/acs.biochem.7b00890.

    Article  CAS  PubMed  Google Scholar 

  57. Tomášková, N., Varhač, R., Lysáková, V., Musatov, A., and Sedlák, E. (2018) Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region, Biochim. Biophys. Acta Proteins Proteom., 1866, 1073-1083, doi: https://doi.org/10.1016/j.bbapap.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  58. Žoldák, G., Sprinzl, M., and Sedlák, E. (2004) Modulation of activity of NADH oxidase from Thermus thermophilus through change in flexibility in the enzyme active site induced by Hofmeister series anions, Eur. J. Biochem., 271, 48-57, doi: https://doi.org/10.1046/j.1432-1033.2003.03900.x.

    Article  CAS  PubMed  Google Scholar 

  59. Dér, A., Kelemen, L., Fábián, L., Taneva, S. G., Fodor, E., et al. (2007) Interfacial water structure controls protein conformation, J. Phys. Chem. B., 111, 5344-5350, doi: https://doi.org/10.1021/jp066206p.

    Article  CAS  PubMed  Google Scholar 

  60. Varhač, R., Tomášková, N., Fabián, M., and Sedlák, E. (2009) Kinetics of cyanide binding as a probe of local stability/flexibility of cytochrome c, Biophys. Chem., 144, 21-26, doi: https://doi.org/10.1016/j.bpc.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  61. Bogár, F., Bartha, F., Násztor, Z., Fábián, L., Leitgeb, B., and Dér, A. (2014) On the Hofmeister effect: fluctuations at the protein-water interface and the surface tension, J. Phys. Chem. B., 118, 8496-8504, doi: https://doi.org/10.1021/jp502505c.

    Article  CAS  PubMed  Google Scholar 

  62. Tomášková, N., Varhač, R., Žoldák, G., Olekšáková, L., Sedláková, D., and Sedlák, E. (2007) Conformational stability and dynamics of cytochrome c affect its alkaline isomerization, J. Biol. Inorg. Chem., 12, 257-266, doi: https://doi.org/10.1007/s00775-006-0183-9.

    Article  CAS  PubMed  Google Scholar 

  63. Garajová, K., Balogová, A., Dušeková, E., Sedláková, D, Sedlák, E., and Varhač, R. (2017) Correlation of lysozyme activity and stability in the presence of Hofmeister series anions, Biochim. Biophys. Acta Proteins Proteom., 1865, 281-288, doi: https://doi.org/10.1016/j.bbapap.2016.11.016.

    Article  CAS  PubMed  Google Scholar 

  64. Dušeková, E., Garajová, K., Yavaşer, R., Varhač, R., and Sedlák, E. (2018) Hofmeister effect on catalytic properties of chymotrypsin is substrate-dependent, Biophys. Chem., 243, 8-16, doi: https://doi.org/10.1016/j.bpc.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

  65. Lemon, H. W. (1947) The effect of alkali on the ultraviolet absorption spectra of hydroxyaldehydes, hydroxyketones, and other phenolic compounds, J. Am. Chem. Soc., 69, 2998-3000, doi: https://doi.org/10.1021/ja01204a018.

    Article  CAS  PubMed  Google Scholar 

  66. Myers, J. K., Pace, C. N., and Scholtz, J. M. (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci., 4, 2138-2148.

    Article  CAS  Google Scholar 

  67. Santoro, M. M., and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants, Biochemistry, 27, 8063-8068, doi: https://doi.org/10.1021/bi00421a014.

    Article  CAS  PubMed  Google Scholar 

  68. URL: https://www.3ds.com/products-services/biovia/ (Dassault Systems BIOVIA; Discovery Studio Client; San Diego, USA (2020) Dassault Systems BIOVIA; Discovery Studio 2020 Client; San Diego, USA.)

  69. Bushnell, G. W., Louie, G. V., and Brayer, G. D. (1990) High-resolution three-dimensional structure of horse heart cytochrome c, J. Mol. Biol., 214, 585-595, doi: https://doi.org/10.1016/0022-2836(90)90200-6.

    Article  CAS  PubMed  Google Scholar 

  70. Bowers, K. J., Sacerdoti, F. D., Salmon, J. K., Shan, Y., Shaw, D. E., et al. (2006) Molecular dynamics – Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing – SC'06, ACM Press.

  71. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987) The missing term in effective pair potentials, J. Phys. Chem., 91, 6269-6271, doi: https://doi.org/10.1021/j100308a038.

    Article  CAS  Google Scholar 

  72. Jorgensen, W. L., and Tirado-Rives, J. (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, J. Am. Chem. Soc., 110, 1657-1666, doi: https://doi.org/10.1021/ja00214a001.

    Article  CAS  PubMed  Google Scholar 

  73. Jorgensen, W. L., and Tirado-Rives, J. (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems, Proc. Natl. Acad. Sci. USA, 102, 6665-6670, doi: https://doi.org/10.1073/pnas.0408037102.

    Article  CAS  PubMed  Google Scholar 

  74. Masood, T. B., Sandhya, S., Chandra, N., and Natarajan, V. (2015) CHEXVIS: a tool for molecular channel extraction and visualization, BMC Bioinformatics, 16, 119.

    Article  Google Scholar 

  75. Baldwin, R. L. (1996) How Hofmeister ion interactions affect protein stability, Biophys. J., 71, 2056-2063, doi: https://doi.org/10.1016/S0006-3495(96)79404-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Russell, B. S., and Bren, K. L. (2002) Denaturant dependence of equilibrium unfolding intermediates and denatured state structure of horse ferricytochrome c, J. Biol. Inorg. Chem., 7, 909-916, doi: https://doi.org/10.1007/s00775-002-0381-z.

    Article  CAS  PubMed  Google Scholar 

  77. Tsong, T. Y. (1974) The Trp-59 fluorescence of ferricytochrome c as a sensitive measure of the over-all protein conformation, J. Biol. Chem., 249, 1988-1990.

    Article  CAS  Google Scholar 

  78. Oviedo-Rouco, S., Perez-Bertoldi, J. M., Spedalieri, C., Castro, M. A., Tomasina, F., et al. (2020) Electron transfer and conformational transitions of cytochrome c are modulated by the same dynamical features, Arch. Biochem. Biophys., 680, 108243, doi: https://doi.org/10.1016/j.abb.2019.108243.

    Article  CAS  PubMed  Google Scholar 

  79. Theorell, H., and Åkesson, Å. (1941) Studies on cytochrome c. II. The optical properties of pure cytochrome c and some of its derivatives, J. Am. Chem. Soc., 63, 1804-1811, doi: https://doi.org/10.1021/ja01852a005.

    Article  CAS  Google Scholar 

  80. Barker, P. D., and Mauk, A. G. (1992) pH-Linked conformational regulation of a metalloprotein oxidation-reduction equilibrium: electrochemical analysis of the alkaline form of cytochrome c, J. Am. Chem. Soc., 114, 3619-3624, doi: https://doi.org/10.1021/ja00036a006.

    Article  CAS  Google Scholar 

  81. Lambeth, D. O., Campbell, K. L., Zand, R., and Palmer, G. (1973) The appearance of transient species of cytochrome c upon rapid oxidation or reduction at alkaline pH, J. Biol. Chem., 248, 8130-8136.

    Article  CAS  Google Scholar 

  82. Deacon, O. M., White, R. W., Moore, G. R., Wilson, M. T., and Worrall, J. A. R. (2020) Comparison of the structural dynamic and mitochondrial electron-transfer properties of the proapoptotic human cytochrome c variants, G41S, Y48H and A51V, J. Inorg. Biochem., 203, 110924, doi: https://doi.org/10.1016/j.jinorgbio.2019.110924.

    Article  CAS  PubMed  Google Scholar 

  83. Deacon, O. M., Svistusenko, D. A., Moore, G. R., Wilson, M. T., and Worrall, J. A. R. (2018) Naturally occurring disease-related mutations in the 40-57 Ω-loop of human cytochrome c control triggering of the alkaline isomerization, Biochemistry, 57, 4276-4288, doi: https://doi.org/10.1021/acs.biochem.8b00520.

    Article  CAS  PubMed  Google Scholar 

  84. Guerra-Castellano, A., Díaz-Quintana, A., Moreno-Beltrán, B., López-Prados, J., Nieto, P. M., et al. (2015) Mimicking tyrosine phosphorylation in human cytochrome c by the evolved tRNA synthetase technique, Chemistry, 21, 15004-15012, doi: https://doi.org/10.1002/chem.201502019.

    Article  CAS  PubMed  Google Scholar 

  85. Tsai, M. Y., Morozov, A. N., Chu, K. Y., and Lin, S. H. (2009) Molecular dynamics insight into the role of tertiary (foldon) interactions on unfolding in cytochrome c, Chem. Phys. Lett., 475, 111-115, doi: https://doi.org/10.1016/j.cplett.2009.05.027.

    Article  CAS  Google Scholar 

  86. George, P., and Tsou, C. L. (1952) Reaction between hydrocyanic acid, cyanide ion and ferricytochrome c, Biochem. J., 50, 440-448, doi: https://doi.org/10.1042/bj0500440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sutin, N., and Yandell, J. K. (1972) Mechanisms of the reactions of cytochrome c. Rate and equilibrium constants for ligand binding to horse heart ferricytochrome c, J. Biol. Chem., 247, 6932-6936.

    Article  CAS  Google Scholar 

  88. Dumortier, C., Meyer, T. E., and Cusanovich, M. A. (1999) Protein dynamics: imidazole binding to class I C-type cytochromes, Arch Biochem Biophys., 371, 142-148, doi: https://doi.org/10.1006/abbi.1999.1440.

    Article  CAS  PubMed  Google Scholar 

  89. Tomášková, N., Varinská, L., and Sedlák, E. (2010) Rate of oxidative modification of cytochrome c by hydrogen peroxide is modulated by Hofmeister anions, Gen. Physiol. Biophys., 29, 254-264, doi: https://doi.org/10.4149/gpb_2010_03_255.

    Article  CAS  Google Scholar 

  90. Pearce, L. L., Gärtner, A. L., Smith, M., and Mauk, A. G. (1989) Mutation-induced perturbation of the cytochrome c alkaline transition, Biochemistry, 28, 3152-3156, doi: https://doi.org/10.1021/bi00434a006.

    Article  CAS  PubMed  Google Scholar 

  91. Nall, B. T., Zuniga, E. H., White, T. B., Wood, L. C., and Ramdas, L. (1989) Replacement of a conserved proline and the alkaline conformational change in iso-2-cytochrome c, Biochemistry, 28, 9834-9839, doi: https://doi.org/10.1021/bi00451a043.

    Article  CAS  PubMed  Google Scholar 

  92. Sinibaldi, F., Piro, M. C., Howes, B. D., Smulevich, G., Ascoli, F., and Santucci, R. (2003) Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c, Biochemistry, 42, 7604-7610, doi: https://doi.org/10.1021/bi034132r.

    Article  CAS  PubMed  Google Scholar 

  93. Baddam, S., and Bowler, B. E. (2006) Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding, Biochemistry, 45, 4611-4619, doi: https://doi.org/10.1021/bi0524971.

    Article  CAS  PubMed  Google Scholar 

  94. Taler, G., Schejter, A., Navon, G., Vig, I., and Margoliash, E. (1995) The nature of the thermal equilibrium affecting the iron coordination of ferric cytochrome c, Biochemistry, 34, 14209-14212, doi: https://doi.org/10.1021/bi00043a027.

    Article  CAS  PubMed  Google Scholar 

  95. Banci, L., Bertini, I., Spyroulias, G. A., and Turano, P. (1998) The conformational flexibility of oxidized cytochrome c studied through its interaction with NH3 and at high temperatures, Eur. J. Inorg. Chem., 1998, 583-591.

    Article  Google Scholar 

  96. Varhač, R., Sedláková, D., Stupák, M., and Sedlák, E. (2015) Non-two-state thermal denaturation of ferricytochrome c at neutral and slightly acidic pH values, Biophys. Chem., 203-204, 41-50, doi: https://doi.org/10.1016/j.bpc.2015.05.002.

    Article  CAS  PubMed  Google Scholar 

  97. Dragomir, I., Hagarman, A., Wallace, C., and Schweitzer-Stenner, R. (2007) Optical band splitting and electronic perturbations of the heme chromophore in cytochrome c at room temperature probed by visible electronic circular dichroism spectroscopy, Biophys. J., 92, 989-998, doi: https://doi.org/10.1529/biophysj.106.095976.

    Article  CAS  PubMed  Google Scholar 

  98. Shah, R., and Schweitzer-Stenner, R. (2008) Structural changes of horse heart ferricytochrome c induced by changes of ionic strength and anion binding, Biochemistry, 47, 5250-5257, doi: https://doi.org/10.1021/bi702492n.

    Article  CAS  PubMed  Google Scholar 

  99. Schweitzer-Stenner, R., Shah, R., Hagarman, A., and Dragomir, I. (2007) Conformational substates of horse heart cytochrome c exhibit different thermal unfolding of the heme cavity, J. Phys. Chem. B, 111, 9603-9607, doi: https://doi.org/10.1021/jp069022j.

    Article  CAS  PubMed  Google Scholar 

  100. Maity, H., Maity, M., and Englander, S. W. (2004) How cytochrome c folds, and why: submolecular foldon units and their stepwise sequential stabilization, J. Mol. Biol., 343, 223-233, doi: https://doi.org/10.1016/j.jmb.2004.08.005.

    Article  CAS  PubMed  Google Scholar 

  101. Hu, W., Kan, Z. Y., Mayne, L., and Englander, S. W. (2016) Cytochrome c folds through foldon-dependent native-like intermediates in an ordered pathway, Proc. Natl. Acad. Sci. USA, 113, 3809-3814, doi: https://doi.org/10.1073/pnas.1522674113.

    Article  CAS  PubMed  Google Scholar 

  102. Dickerson, R. E., Takano, T., Eiseberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E. (1971) Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 Å resolution, J. Biol. Chem., 246, 1511-1535.

    Article  CAS  Google Scholar 

  103. Louie, G. V., Hutcheon, W. L., and Brayer, G. D. (1988) Yeast iso-1-cytochrome c. A 2.8 Å resolution three-dimensional structure determination, J. Mol. Biol., 199, 295-314, doi: https://doi.org/10.1016/0022-2836(88)90315-4.

    Article  CAS  PubMed  Google Scholar 

  104. Levin, Ö. (1963) Electron micrographs of bovine cytochrome c, J. Mol. Biol., 6, 137-140, doi: https://doi.org/10.1016/S0022-2836(63)80129-1.

    Article  CAS  PubMed  Google Scholar 

  105. Margoliash, E., Needleman, S. B., and Stewart, J. W. (1963) A comparison of the amino acid sequences of the cytochrome c of several vertebrates, Acta Chem. Scand., 17, S250-S256.

    Article  CAS  Google Scholar 

  106. Zand, R., and Vinogradov, S. (1968) Circular Dichroism Studies II. The far ultraviolet circular dichroism of cytochrome c, Arch. Biochem. Biophys., 125, 94-97, doi: https://doi.org/10.1016/0003-9861(68)90642-5.

    Article  CAS  PubMed  Google Scholar 

  107. Margoliash, E., and Schejter, A. (1966) Cytochrome c, Adv. Protein Chem., 21, 113-286, doi: https://doi.org/10.1016/s0065-3233(08)60128-x.

    Article  CAS  PubMed  Google Scholar 

  108. Takano, T., and Dickerson, R. E. (1981) Conformation change of cytochrome c. I. Ferricytochrome c refinement at 1.8 Å and comparison with the ferrocytochrome structure, J. Mol. Biol., 153, 95-115, doi: https://doi.org/10.1016/0022-2836(81)90529-5.

    Article  CAS  PubMed  Google Scholar 

  109. Berghuis, A. M., and Brayer, G. D. (1992) Oxidation state-dependent conformational changes in cytochrome c, J. Mol. Biol., 223, 959-976, doi: https://doi.org/10.1016/0022-2836(92)90255-i.

    Article  CAS  PubMed  Google Scholar 

  110. Lei, H., and Bowler, B. E. (2019) Naturally occurring A51V variant of human cytochrome c destabilizes the native state and enhances peroxidase activity, J. Phys. Chem. B, 123, 8939-8953, doi: https://doi.org/10.1021/acs.jpcb.9b05869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Harbury, H. A., Cronin, J. R., Fanger, M. W., Hettinger, T. P., Murphy, A. J., et al. (1965) Complex formation between methionine and a heme peptide from cytochrome c, Proc. Natl. Acad. Sci. USA, 54, 1658-1664, doi: https://doi.org/10.1073/pnas.54.6.1658.

    Article  CAS  PubMed  Google Scholar 

  112. Wilgus, H., and Stellwagen, E. (1974) Alkaline isomerization of ferricytochrome c: identification of the lysine ligand, Proc. Natl. Acad. Sci. USA, 71, 2892-2894, doi: https://doi.org/10.1073/pnas.71.7.2892.

    Article  CAS  PubMed  Google Scholar 

  113. Brautigan, D. L., Feinberg, B. A., Hoffman, B. M., Margoliash, E., Preisach, J., and Blumberg, W. E. (1977) Multiple low spin forms of the cytochrome c ferrihemochrome. EPR spectra of various eukaryotic and prokaryotic cytochromes c, J. Biol. Chem., 252, 574-582.

    Article  CAS  Google Scholar 

  114. Ferrer, J. C., Guillemette, J. G., Bogumil, R., Inglis, S. C., Smith, M., and Mauk, A. G. (1993) Identification of Lys79 as an iron ligand in one form of alkaline state yeast iso-1-cytochrome c, J. Am. Chem. Soc., 115, 7507-7508, doi: https://doi.org/10.1021/ja00069a062.

    Article  CAS  Google Scholar 

  115. Moore, G. R., and Williams, R. J. P. (1977) Structural basis for the variation in redox potential of cytochromes, FEBS Lett., 79, 229-232, doi: https://doi.org/10.1016/0014-5793(77)80793-x.

    Article  CAS  PubMed  Google Scholar 

  116. Eaton, W. A., and Hochstrasser, R. M. (1967) Electric spectrum of single crystals of ferricytochrome c, J. Chem. Phys., 46, 2533-2539, doi: https://doi.org/10.1063/1.1841081.

    Article  CAS  PubMed  Google Scholar 

  117. Pettigrew, G. W., and Moore, G. R. (1987) Cytochromes c Biological Aspects, Springer-Verlag, Berlin Heidelberg, doi: https://doi.org/10.1007/978-3-642-72698-9.

  118. Brandt, K. G., Parks, P. C., Czerlinski, G. H., and Hess, G. P. (1966) On the elucidation of the pH dependence of the oxidation-reduction potential of cytochrome c at alkaline pH, J. Biol. Chem., 241, 4180-4185.

    Article  CAS  Google Scholar 

  119. Paul, K. G. (1947) Oxidation-reduction potential of cytochrome c, Arch. Biochem., 12, 441-450.

    CAS  PubMed  Google Scholar 

  120. Henderson, R. W., and Rawlinson, W. A. (1956) Oxidation-reduction potential od modified cytochrome c, Nature, 177, 1180-1181, doi: https://doi.org/10.1038/1771180b0.

    Article  CAS  PubMed  Google Scholar 

  121. Theodorakis, J. L., Garber, E. A., McCracken, J., Peisach, J., Schejter, A., and Margoliash, E. (1995) A chemical modification of cytochrome-c lysines leading to changes in heme iron ligation, Biochim. Biophys. Acta, 1252, 103-113, doi: https://doi.org/10.1016/0167-4838(95)00097-e.

    Article  PubMed  Google Scholar 

  122. Lemberg, R., and Barrett, J. (1973) Cytochromes, Academic Press, New York.

  123. Rodkey, F. L., and Ball, E. G. (1950) Oxidation-reduction potentials of the cytochrome c system, J. Biol. Chem., 182, 17-28.

    Article  CAS  Google Scholar 

  124. Shejter, A., Luntz, T. L., Koshy, T. I., and Margoliash, E. (1992) Relationship between local and global stabilities of proteins: site-directed mutants and chemically-modified derivatives of cytochrome c, Biochemistry, 31, 8336-8343, doi: https://doi.org/10.1021/bi00150a030.

    Article  Google Scholar 

Download references

Funding

This work was supported by the research grant provided by the Slovak Research and Development Agency (grant no. APVV-15-0069) and by the grant agency of the Ministry of Education, Science, Research, and Sport of the Slovak Republic (grant no. VEGA 2/0009/17). This publication is the result of the implementation of the project OPENMED (Open Scientific Community for Modern Interdisciplinary Research in Medicine) ITMS2014+: 313011V455 from the Operational Program Integrated Infrastructure funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Tomášková.

Ethics declarations

The authors declare no direct or potential conflict of interest related to the publication of this article. This article does not contain descriptions of studies performed by the authors with participation of humans or animals.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedlák, E., Kožár, T., Varhač, R. et al. Anion-Specific Effects on the Alkaline State of Cytochrome c. Biochemistry Moscow 86, 59–73 (2021). https://doi.org/10.1134/S0006297921010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921010065

Keywords

Navigation