Skip to main content
Log in

α-Synuclein Overexpression in SH-SY5Y Human Neuroblastoma Cells Leads to the Accumulation of Thioflavin S-positive Aggregates and Impairment of Glycolysis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Deterioration of energy metabolism in affected cells is an important feature of synucleinopathies, including Parkinson's disease. Here, we studied the association between α-synuclein accumulation and glycolysis using SH-SY5Y neuroblastoma cell lines stably expressing wild-type α-synuclein or its A53T mutant linked to the autosomal dominant form of the disease. Overexpression of both proteins led to the accumulation of thioflavin S-positive aggregates, more pronounced for α-synuclein A53T. It also caused changes in the cell energy metabolism manifested as a decrease in the lactate accumulation and glucose uptake. Impairments in glycolysis were also accompanied by a decrease in the activity of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In vitro experiments with purified proteins indicated that GAPDH inactivation might be caused by its binding to the monomeric and oligomeric forms of α-synuclein. Therefore, a decrease in the GAPDH activity induced by its interaction with α-synuclein, might be one of the causes of glucose metabolism deterioration in synucleinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

α-synWT:

α-synuclein wild-type

α-synA53T:

α-synuclein A53T

CD:

circular dichroism

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

hGAPDH:

recombinant human GAPDH

G3P:

glyceraldehyde-3-phosphate

PBS:

phosphate buffered saline, pH 7.4

PD:

Parkinson’s disease

ThS:

thioflavin S

ThT:

thioflavin

REFERENCES

  1. Schapira, A., Cooper, J., Dexter, D., Clark, J., Jenner, P., and Marsden, C. (1990) Mitochondrial complex I deficiency in Parkinson’s disease, J. Neurochem., 54, 823-827, doi: 10.1111/j.1471-4159.1990.tb02325.x.

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura, K. (2013) α-Synuclein and mitochondria: partners in crime? Neurotherapeutics, 10, 391-9, doi: 10.1007/s13311-013-0182-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henchcliffe, C., Shungu, D., Mao, X., Huang, C., Nirenberg, M., Jenkins, B., and Beal, M. (2008) Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease, Ann. N. Y. Acad. Sci., 1147, 206-20, doi: 10.1196/annals.1427.037.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, P., Gan, M., Ebrahim, A., Castanedes-Casey, M., Dickson, D., and Yen, S. (2013) Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of α-synuclein oligomers and decrease of neurites, Neurobiol. Aging, 34, 1504-1515, doi: 10.1016/j.neurobiolaging.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  5. Anandhan, A., Lei, S., Levytskyy, R., Pappa, A., Panayiotidis, M., Cerny, R., Khalimonchuk, O., Powers, R., and Franco, R. (2017) Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (α-synuclein)-environment (paraquat) interactions, Mol. Neurobiol., 54, 3825-3842, doi: 10.1007/s12035-016-9906-2.

    Article  CAS  PubMed  Google Scholar 

  6. Anandhan, A., Jacome, M., Lei, S., Hernandez-Franco, P., Pappa, A., Panayiotidis, M., Powers, R., and Franco, R. (2017) Metabolic dysfunction in Parkinson’s disease: bioenergetics, redox homeostasis and central carbon metabolism, Brain Res. Bull., 133, 12-30, doi: 10.1016/j.brainresbull.2017.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herrero-Mendez, A., Almeida, A., Fernández, E., Maestre, C., Moncada, S., and Bolaños, J. (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1, Nat. Cell Biol., 11, 747-52, doi: 10.1038/ncb1881.

    Article  CAS  PubMed  Google Scholar 

  8. Dunn, L., Allen, G, Mamais, A., Ling, H., Li, A., Duberley, K., Hargreaves, I., Pope, S., Holton, J., Lees, A., Heales, S., and Bandopadhyay, R. (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease, Neurobiol. Aging, 35, 1111-1115, doi: 10.1016/j.neurobiolaging.2013.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Polymeropoulos, M., Lavedan, C., Leroy, E., Ide, S., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W., Lazzarini, A., Duvoisin, R., Iorio, G., Golbe, L., and Nussbaum, R. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science, 276, 2045-2047, doi: 10.1126/science.276.5321.2045.

    Article  CAS  PubMed  Google Scholar 

  10. Krüger, R., Kuhn, W., Müller, T., Woitalla, D., Graeber, M., Kösel, S., Przuntek, H., Epplen, J., Schöls, L., and Riess, O. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease, Nat. Genet., 18, 106-108, doi: 10.1038/ng0298-106.

    Article  PubMed  Google Scholar 

  11. Zarranz, J., Alegre, J., Gómez-Esteban, J., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atarés, B., Llorens, V., Tortosa, E., Ser, T., Muñoz, D., and Yebenes, J. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol., 55, 164-173, doi: 10.1002/ana.10795.

    Article  CAS  PubMed  Google Scholar 

  12. Chartier-Harlin, M-C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M., and Destée, A. (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease, Lancet (London, England), 364, 1167-1169, doi: 10.1016/S0140-6736(04)17103-1.

    Article  CAS  Google Scholar 

  13. Singleton A., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003) Alpha-synuclein locus triplication causes Parkinson’s disease, Science, 302, 841, doi: 10.1126/science.1090278.

    Article  CAS  PubMed  Google Scholar 

  14. Shalova, I., Cechalova, K., Rehakova, Z., Dimitrova, P., Ognibene, E., Caprioli, A., Schmalhausen, E., Muronetz, V., and Saso, L. (2007) Decrease of dehydrogenase activity of cerebral glyceraldehyde-3-phosphate dehydrogenase in different animal models of Alzheimer’s disease, Biochim. Biophys. Acta, 1770, 826-832, doi: 10.1016/j.bbagen.2007.01.014.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzola, J., and Sirover, M. (2001) Reduction of glyceraldehyde-3-phosphate dehydrogenase activity in Alzheimer’s disease and in Huntington’s disease fibroblasts, J. Neurochem., 76, 442-449, doi: 10.1046/j.1471-4159.2001.00033.x.

    Article  CAS  PubMed  Google Scholar 

  16. Tatton, N. (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease, Exp. Neurol., 166, 29-43, doi: 10.1006/exnr.2000.7489.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuchiya, K., Tajima, H., Kuwae, T., Takeshima, T., Nakano, T., Tanaka, M., Sunaga, K., Fukuhara, Y., Nakashima, K., Ohama, E., Mochizuki, H., Mizuno, Y., Katsube, N., and Ishitani, R. (2005) Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusions, Eur. J. Neurosci., 21, 317-326, doi: 10.1111/j.1460-9568.2005.03870.x.

    Article  PubMed  Google Scholar 

  18. Barinova, K., Khomyakova, E., Semenyuk, P., Schmalhausen, E., and Muronetz, V. (2018) Binding of alpha-synuclein to partially oxidized glyceraldehyde-3-phosphate dehydrogenase induces subsequent inactivation of the enzyme, Arch. Biochem. Biophys., 642, 10-22, doi: 10.1016/j.abb.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  19. Barinova, K., Kuravsky, M., Arutyunyan, A., Serebryakova, M., Schmalhausen, E., and Muronetz, V. (2017) Dimerization of Tyr136Cys alpha-synuclein prevents amyloid transformation of wild-type alpha-synuclein, Int. J. Biol. Macromol., 96, 35-43, doi: 10.1016/j.ijbiomac.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, doi: 10.1006/abio.1976.9999.

    Article  CAS  Google Scholar 

  21. Danshina, P., Schmalhausen, E., Avetisyan, A., and Muronetz, V. (2001) Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis, IUBMB Life, 51, 309-314, doi: 10.1080/152165401317190824.

    Article  CAS  PubMed  Google Scholar 

  22. Barinova, K., Eldarov, M., Khomyakova, E., Muronetz, V., and Schmalhausen, E. (2017) Isolation of recombinant human untagged glyceraldehyde-3-phosphate dehydrogenase from E. coli producer strain, Protein Expr. Purif., 137, 1-6, doi: 10.1016/j.pep.2017.06.009.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, B., and Kamitani, T. (2019) Improved immunodetection of endogenous α-synuclein, PLoS One, 6, e23939, doi: 10.1371/journal.pone.0023939.

    Article  CAS  Google Scholar 

  24. Medvedeva, M., Barinova, K., Melnikova, A., Semenyuk, P., Kolmogorov, V., Gorelkin, P., Erofeev, A., and Muronetz, V. (2020) Naturally occurring cinnamic acid derivatives prevent amyloid transformation of alpha-synuclein, Biochimie, 170, 128-139, doi: 10.1016/j.biochi.2020.01.004.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Z., Yu, Y., Li, X., Ross, C., and Smith, W. (2011) Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism, Pharmacol. Res., 63, 439-444, doi: 10.1016/j.phrs.2011.01.004.

    Article  CAS  PubMed  Google Scholar 

  26. Mishizen, A. J., Lynch, D. R., Nakashima, A., Nagatsu, T., Giasson, B. I., Ota, A., Thomas, S. A., Mazzulli, J. R., and Ischiropoulos, H. (2006) Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates, J. Neurosci., 26, 10068-78, doi: 10.1523/jneurosci.0896-06.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marmolino, D., Foerch, P., Atienzar, F., Staelens, L., Michel, A., and Scheller, D. (2016) Alpha-synuclein dimers and oligomers are increased in overexpressing conditions in vitro and in vivo, Mol. Cell. Neurosci., 71, 92-101, doi: 10.1016/J.MCN.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  28. Burré, J., Vivona, S., Diao, J., Sharma, M., Brunger, A., and Südhof, T. (2013) Properties of native brain α-synuclein, Nature, 498, 1-6, doi: 10.1038/nature12125.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project No. 18-34-00132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Melnikova.

Ethics declarations

This article does not contain descriptions of studies with participation of humans or animals performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, A., Pozdyshev, D., Barinova, K. et al. α-Synuclein Overexpression in SH-SY5Y Human Neuroblastoma Cells Leads to the Accumulation of Thioflavin S-positive Aggregates and Impairment of Glycolysis. Biochemistry Moscow 85, 604–613 (2020). https://doi.org/10.1134/S0006297920050090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920050090

Keywords

Navigation