Skip to main content
Log in

Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Akt:

serine/threonine protein kinase B (RAC–alpha serine/threonine protein kinase, protein kinase B alpha)

α–ER:

α estrogen receptor

AP–1:

activator protein 1 (transcription factor consisting of Fos and Jun proteins)

APE1/Ref–1:

apurinic/apyrimidinic (AP) endonuclease 1/redox factor 1

AR:

androgen receptor

ASK1:

apoptosis signal–regulating kinase 1

ATF/CREB:

activating transcription factor/cAMP–response element–binding protein

ATM:

ataxia telangiectasia mutated (serine protein kinase)

Bcl–2:

B–cell lymphoma 2 (apoptosis regulator)

C/EBPβ:

CCAAT/enhancer–binding protein β (transcription fac–tor)

c–Abl:

tyrosine protein kinase

c–Myc:

myelocytomatosis cancers (transcription factor)

COX–2:

cyclooxygenase 2

DEP–1:

density–enhanced phosphatase 1 (tyrosine phosphatase)

DHT:

dihydrotestosterone

DTT:

dithiothreitol

EGFR:

epidermal growth factor receptor

ER:

endoplasmic reticulum

ERK:

K–Ras/extracellular signal–regulated kinase

Ets1:

E26 transformation–specific–1 (transcription factor)

FLT3 ITD:

Fms–related tyrosine kinase 3 internal tandem duplication

Fos:

transcription factors c–Fos, FosB, FosL1, and FosL2

FOXO3A:

forkhead box protein O3A (transcription factor)

FOXOM1:

forkhead box protein M1 (transcription factor)

Grx:

glutaredoxin

GSH:

glutathione

HIF–1α:

hypoxia inducible factor 1

HMGB1:

high–mobility group protein B1, amphoterin

HRE:

HIF–responsive element

IP3R:

inositol trisphosphate receptor

JNK:

cJun N–terminal protein kinase

Jun:

transcription factors c–Jun, JunB, and JunD

KEAP1:

Kelch–like ECH–associated protein (NRF2 inhibitor)

Kv7:

voltage–gated K+ channel

LRRK2:

leucine–rich repeat kinase 2

MAPK:

mitogen–activated protein kinase

MKP:

MAPK phosphatase

MMP:

matrix metalloproteinase

MST1:

mammalian STE20–like kinase 1

mTOR:

mammalian target of rapamycin

MyD88:

protein encoded by the myeloid differentiation primary response gene 88

NF–κB:

nuclear factor kappa–light–chain–enhancer of activated B cells (transcription factor)

NRF2:

nuclear factor (erythroid–derived 2)–like 2 (transcription factor)

p38:

mitogen–activated protein kinase of p38 family (α, β, γ, δ)

p53:

transcription factor p53

p66Shc:

SHC1

p70S6K:

serine/threonine protein kinase (ribosomal protein S6 kinase beta–1)

PDGF:

platelet–derived growth factor

PDGFR:

platelet–derived growth factor receptor

PDI:

protein disulfide isomerase

πGST:

glutathione S–transferase π

PKC:

protein kinase C

PKG:

protein kinase G

Prx1–6:

peroxiredoxins 1–6

PS2:

presenilin

PTEN:

phosphatase and tensin homolog

RhoC:

Ras homolog gene family

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

RyR1:

ryanodine receptor 1

SESN:

sestrin

SHP2:

Src homology 2 domain–containing phosphatase 2

shRNA:

short hairpin RNA

siRNA:

small interfering RNA

Srx:

sulfiredoxin

STAT3:

signal transducer and activator of transcription 3 (transcription factor)

TCPTP:

T–cell protein tyrosine phosphatase

TGF–β1:

transforming growth factor β1

TIMP2:

tissue inhibitor of matrix metalloproteinases 2

TLR:

Toll–like receptor

TNFα:

tumor necrosis factor α

TRAIL:

TNF–related apoptosis–inducing ligand

Trx:

thioredoxin

TrxR:

thioredoxin reductase

UCP1:

thermogenin

uPAR:

urokinase–type plasminogen activator receptor

VEGF:

vascular endothelial growth factor

VEGFR:

vascular endothelial growth factor receptor

References

  1. Sharapov, M. G., Ravin, V. K., and Novoselov, V. I. (2014) Peroxiredoxins as multifunctional enzymes, Mol. Biol. (Moscow), 48, 520–545.

    Article  CAS  Google Scholar 

  2. Rhee, S. G., and Kil, I. S. (2016) Multiple functions and regulation of mammalian peroxiredoxins, Annu. Rev. Biochem., 85, 1–27.

    Article  CAS  Google Scholar 

  3. Perkins, A., Poole, L. B., and Karplus, P. A. (2014) Tuning of peroxiredoxin catalysis for various physiological roles, Biochemistry, 53, 7693–7705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jarvis, R. M., Hughes, S. M., and Ledgerwood, E. C. (2012) Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mam–malian cells, Free Radic. Biol. Med., 53, 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  5. Neumann, C. A., Krause, D. S., Carman, C. V, Das, S., Dubey, D. P., Abraham, J. L., Bronson, R. T., Fujiwara, Y., Orkin, S. H., and Van Etten, R. A. (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression, Nature, 424, 561–565.

    Article  CAS  PubMed  Google Scholar 

  6. Riddell, J. R., Maier, P., Sass, S. N., Moser, M. T., Foster, B. A., and Gollnick, S. O. (2012) Peroxiredoxin 1 stimu–lates endothelial cell expression of VEGF via TLR4 dependent activation of HIF–1α, PLoS One, 7, e50394.

    Google Scholar 

  7. Cao, J., Schulte, J., Knight, A., Leslie, N. R., Zagozdzon, A., Bronson, R., Manevich, Y., Beeson, C., and Neumann, C. A. (2009) Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity, EMBO J., 28, 1505–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nassour, H., Wang, Z., Saad, A., Papaluca, A., Brosseau, N., Affar, E. B., Alaoui–Jamali, M. A., and Ramotar, D. (2016) Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin–8 expression, Sci. Rep., 6, 29389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egler, R. A., Fernandes, E., Rothermund, K., Sereika, S., de Souza–Pinto, N., Jaruga, P., Dizdaroglu, M., and Prochownik, E. V. (2005) Regulation of reactive oxygen species, DNA damage, and c–Myc function by peroxire–doxin 1, Oncogene, 24, 8038–8050.

    CAS  Google Scholar 

  10. Morinaka, A., Funato, Y., Uesugi, K., and Miki, H. (2011) Oligomeric peroxiredoxin–I is an essential intermediate for p53 to activate MST1 kinase and apoptosis, Oncogene, 30, 4208–4218.

    Article  CAS  PubMed  Google Scholar 

  11. Godfrey, R., Arora, D., Bauer, R., Stopp, S., Muller, J. P., Heinrich, T., Bohmer, S.–A., Dagnell, M., Schnetzke, U., Scholl, S., Ostman, A., and Bohmer, F.–D. (2012) Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor pro–tein–tyrosine phosphatase DEP–1/PTPRJ, Blood, 119, 4499–4511.

    Article  CAS  PubMed  Google Scholar 

  12. Park, Y.–H., Kim, S.–U., Lee, B.–K., Kim, H.–S., Song, I.–S., Shin, H.–J., Han, Y.–H., Chang, K.–T., Kim, J.–M., Lee, D.–S., Kim, Y.–H., Choi, C.–M., Kim, B.–Y., and Yu, D.–Y. (2013) Prx I suppresses K–ras–driven lung tumorige–nesis by opposing redox–sensitive ERK/cyclin D1 pathway, Antioxid. Redox Signal., 19, 482–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiota, M., Yokomizo, A., Kashiwagi, E., Takeuchi, A., Fujimoto, N., Uchiumi, T., and Naito, S. (2011) Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells, Free Radic. Biol. Med., 51, 78–87.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, S., Fu, Z., Wei, J., Guo, J., Liu, M., and Du, K. (2015) Peroxiredoxin 2 is involved in vasculogenic mimicry formation by targeting VEGFR2 activation in colorectal cancer, Med. Oncol., 32, 1–8.

    Article  CAS  Google Scholar 

  15. Lu, W., Fu, Z., Wang, H., Feng, J., Wei, J., and Guo, J. (2014) Peroxiredoxin 2 knockdown by RNA interference inhibits the growth of colorectal cancer cells by downregu–lating Wnt/β–catenin signaling, Cancer Lett., 343, 190–199.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, R., Wei, J., Zhang, S., Wu, X., Guo, J., Liu, M., Du, K., Xu, J., Peng, L., Lv, Z., You, W., Xiong, Y., and Fu, Z. (2016) Peroxiredoxin 2 is essential for maintaining cancer stem cell–like phenotype through activation of Hedgehog signaling pathway in colon cancer, Oncotarget, 7, 86816–86828.

    PubMed  PubMed Central  Google Scholar 

  17. Luo, W., Chen, I., Chen, Y., Alkam, D., Wang, Y., and Semenza, G. L. (2016) PRDX2 and PRDX4 are negative regulators of hypoxia–inducible factors under conditions of prolonged hypoxia, Oncotarget, 7, 6379–6397.

    PubMed  PubMed Central  Google Scholar 

  18. Sobotta, M. C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A. N. D., and Dick, T. P. (2015) Peroxiredoxin–2 and STAT3 form a redox relay for H2O2 signaling, Nat. Chem. Biol., 11, 64–70.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, K. W., Lee, D. J., Lee, J. Y., Kang, D. H., Kwon, J., and Kang, S. W. (2011) Peroxiredoxin II restrains DNA damage–induced death in cancer cells by positively regulat–ing JNK–dependent DNA repair, J. Biol. Chem., 286, 8394–8404.

    Article  CAS  PubMed  Google Scholar 

  20. Song, I.–S. S., Kim, H.–K. K., Jeong, S.–H. H., Lee, S.–R. R., Kim, N., Rhee, B. D., Ko, K. S., and Han, J. (2011) Mitochondrial peroxiredoxin III is a potential target for cancer therapy, Int. J. Mol. Sci., 12, 7163–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xi, H., Gao, Y.–H., Han, D.–Y., Li, Q.–Y., Feng, L.–J., Zhang, W., Ji, G., Xiao, J.–C., Zhang, H.–Z., and Wei, Q. (2014) Hypoxia inducible factor–1α suppresses peroxire–doxin 3 expression to promote proliferation of CCRCC cells, FEBS Lett., 588, 3390–3394.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, Y. S., Lee, H. L., Lee, K. S. K. B., Park, J. H., Chung, W. Y., Lee, K. S. K. B., Sheen, S. S., Park, K. J., and Hwang, S. C. (2011) Nuclear factor E2–related factor 2 dependent overexpression of sulfiredoxin and peroxiredox–in III in human lung cancer, Korean J. Intern. Med., 26, 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeong, H. J., Jeong, H. W., Song, S. S., Kang, J. W., Seo, J. H., Lee, Y. H., Lee, K. S., and Kim, D. W. (2011) Upregulation of peroxiredeoxin III in the hippocampus of acute immobilization stress model rats and the Foxo3a–dependent expression in PC12 cells, Cell. Mol. Neurobiol., 31, 1041–1046.

    Article  CAS  PubMed  Google Scholar 

  24. Tavender, T. J., Springate, J. J., and Bulleid, N. J. (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum, EMBO J., 29, 4185–4197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y., Emmanuel, N., Kamboj, G., Chen, J., Shurafa, M., Van Dyke, D. L., Wiktor, A., and Rowley, J. D. (2004) PRDX4, a member of the peroxiredoxin family, is fused to AML1 (RUNX1) in an acute myeloid leukemia patient with a t(X;21)(p22;q22), Genes Chromosom. Cancer, 40, 365–370.

    Article  CAS  PubMed  Google Scholar 

  26. Wei, Q., Jiang, H., Xiao, Z., Baker, A., Young, M. R., Veenstra, T. D., and Colburn, N. H. (2011) Sulfiredoxin–peroxiredoxin IV axis promotes human lung cancer pro–gression through modulation of specific phosphokinase sig–naling, Proc. Natl. Acad. Sci. USA, 108, 7004–7009.

    Article  PubMed  Google Scholar 

  27. Walbrecq, G., Wang, B., Becker, S., Hannotiau, A., Fransen, M., and Knoops, B. (2015) Antioxidant cytopro–tection by peroxisomal peroxiredoxin–5, Free Radic. Biol. Med., 84, 215–226.

    Article  CAS  PubMed  Google Scholar 

  28. Ahn, H.–M., Yoo, J.–W., Lee, S., Lee, H. J., Lee, H.–S., and Lee, D.–S. (2017) Peroxiredoxin 5 promotes the epithelial–mesenchymal transition in colon cancer, Biochem. Biophys. Res. Commun., 487, 580–586.

    Article  CAS  PubMed  Google Scholar 

  29. Banmeyer, I., Marchand, C., Clippe, A., and Knoops, B. (2005) Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide, FEBS Lett., 579, 2327–2333.

    Article  CAS  PubMed  Google Scholar 

  30. Wu, Y., Feinstein, S. I., Manevich, Y., Chowdhury, I., Pak, J. H., Kazi, A., Dodia, C., Speicher, D. W., and Fisher, A. B. (2009) Mitogen–activated protein kinase–mediated phosphorylation of peroxiredoxin 6 regulates its phospholi–pase A2 activity, Biochem. J., 419, 669–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zha, X., Wu, G., Zhao, X., Zhou, L., Zhang, H., Li, J., Ma, L., and Zhang, Y. (2015) PRDX6 protects ARPE–19 cells from oxidative damage via PI3K/AKT signaling, Cell. Physiol. Biochem., 36, 2217–2228.

    Article  CAS  PubMed  Google Scholar 

  32. Choi, H., Chang, J.–W., and Jung, Y.–K. (2011) Peroxiredoxin 6 interferes with TRAIL–induced death–inducing signaling complex formation by binding to death effector domain caspase, Cell Death Differ., 18, 405–414.

    Article  CAS  PubMed  Google Scholar 

  33. Yun, H.–M. M., Park, K.–R. R., Park, M. H., Kim, D. H., Jo, M. R., Kim, J. Y., Kim, E.–C. C., Yoon, D. Y., Han, S. B., and Hong, J. T. (2015) PRDX6 promotes tumor devel–opment via the JAK2/STAT3 pathway in a urethane–induced lung tumor model, Free Radic. Biol. Med., 80, 136–144.

    Article  CAS  PubMed  Google Scholar 

  34. Peskin, A. V., Dickerhof, N., Poynton, R. A., Paton, L. N., Pace, P. E., Hampton, M. B., and Winterbourn, C. C. (2013) Hyperoxidation of peroxiredoxins 2 and 3: rate con–stants for the reactions of the sulfenic acid of the peroxidat–ic cysteine, J. Biol. Chem., 288, 14170–14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung, C. L., Choi, H. I., Yu, S. P., Hyung, W. N., Hyun, A. W., Kwon, K. S., Yu, S. K., Sue, G. R., Kim, K., and Ho, Z. C. T. (2008) Irreversible oxidation of the active–site cys–teine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity, J. Biol. Chem., 283, 28873–28880.

    Article  CAS  Google Scholar 

  36. Kim, S. Y., Jo, H.–Y. Y., Kim, M. H., Cha, Y. Y., Choi, S. W., Shim, J.–H. H., Kim, T. J., Lee, K.–Y. Y., So, Y. K., Jo, H.–Y. Y., Mi, H. K., Cha, Y. Y., Sung, W. C., Shim, J.–H. H., Tae, J. K., Lee, K.–Y. Y., Kim, S. Y., Jo, H.–Y. Y., Kim, M. H., Cha, Y. Y., Choi, S. W., Shim, J.–H. H., Kim, T. J., and Lee, K.–Y. Y. (2008) H2O2–dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up–regulation of iPLA2 activity, J. Biol. Chem., 283, 33563–33568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Venereau, E., Ceriotti, C., and Bianchi, M. E. (2015) DAMPs from cell death to new life, Front. Immunol., 6, 422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park, M. H., Jo, M., Kim, Y. R., Lee, C.–K. K., and Hong, J. T. (2016) Roles of peroxiredoxins in cancer, neurodegen–erative diseases and inflammatory diseases, Pharmacol. Ther., 163, 1–23.

    Article  CAS  PubMed  Google Scholar 

  39. Poschmann, G., Grzendowski, M., Stefanski, A., Bruns, E., Meyer, H. E., and Stuhler, K. (2015) Redox proteomics reveal stress responsive proteins linking peroxiredoxin–1 status in glioma to chemosensitivity and oxidative stress, Biochim. Biophys. Acta, 1854, 624–631.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, J., Jing, X., Niu, W., Zhang, M., Ge, L., Miao, C., and Tang, X. (2016) Peroxiredoxin 1 has an anti–apoptotic role via apoptosis signal–regulating kinase 1 and p38 activa–tion in mouse models with oral precancerous lesions, Oncol. Lett., 12, 413–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, Y.–J., Lee, W.–S., Ip, C., Chae, H.–Z., Park, E.–M., Park, Y.–M., Pi, G. S., Kinase, N. H., Kim, Y.–J., Lee, W.–S., Ip, C., Chae, H.–Z., Park, E.–M., Park, Y.–M., Pi, G. S., Kinase, N. H., Kim, Y.–J., Lee, W.–S., Ip, C., Chae, H.–Z., Park, E.–M., Park, Y.–M., Pi, G. S., Kinase, N. H., Kim, Y.–J., Lee, W.–S., Ip, C., Chae, H.–Z., Park, E.–M., and Park, Y.–M. (2006) Prx1 suppresses radiation–induced c–Jun NH2–terminal kinase signaling in lung cancer cells through interaction with the glutathione S–transferase Pi/c–Jun NH2–terminal kinase complex, Cancer Res., 66, 7136–7142.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, H., Wu, L., Mishra, M., Chawsheen, H. A., and Wei, Q. (2014) Expression of peroxiredoxin 1 and 4 promotes human lung cancer malignancy, Am. J. Cancer Res., 4, 445–460.

    PubMed  PubMed Central  Google Scholar 

  43. Gong, F., Hou, G., Liu, H., and Zhang, M. (2015) Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squa–mous cell carcinoma, Med. Oncol., 32, 455.

    Article  CAS  PubMed  Google Scholar 

  44. Morinaka, A., Funato, Y., Uesugi, K., and Miki, H. (2011) Oligomeric peroxiredoxin–I is an essential intermediate for p53 to activate MST1 kinase and apoptosis, Oncogene, 30, 4208–4218.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., He, S., Sun, J.–M., Delcuve, G. P., and Davie, J. R. (2010) Selective association of peroxiredoxin 1 with genomic DNA and COX–2 upstream promoter elements in estrogen receptor negative breast cancer cells, Mol. Biol. Cell, 21, 2987–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Du, Z.–X., Yan, Y., Zhang, H.–Y., Liu, B.–Q., Gao, Y.–Y., Niu, X.–F., Guan, Y., Meng, X., and Wang, H.–Q. (2010) Suppression of MG132–mediated cell death by peroxire–doxin 1 through influence on ASK1 activation in human thyroid cancer cells, Endocr. Relat. Cancer, 17, 553–560.

    Article  CAS  PubMed  Google Scholar 

  47. Nicolussi, A., D’Inzeo, S., Mincione, G., Buffone, A., Di Marcantonio, M. C., Cotellese, R., Cichella, A., Capalbo, C., Di Gioia, C., Nardi, F., Giannini, G., and Coppa, A. (2014) PRDX1 and PRDX6 are repressed in papillary thy–roid carcinomas via BRAF V600E–dependent and–inde–pendent mechanisms, Int. J. Oncol., 44, 548–556.

    Article  CAS  PubMed  Google Scholar 

  48. Taniuchi, K., Furihata, M., Hanazaki, K., Iwasaki, S., Tanaka, K., Shimizu, T., Saito, M., and Saibara, T. (2015) Peroxiredoxin 1 promotes pancreatic cancer cell invasion by modulating p38 MAPK activity, Pancreas, 44, 331–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, Q.–K., Zhu, J.–Y., Wang, W., Lv, Y., Zhou, H.–C., Yu, J.–H., Xu, G.–L., Ma, J.–L., Zhong, W., and Jia, W.–D. (2014) Diagnostic and prognostic significance of peroxire–doxin 1 expression in human hepatocellular carcinoma, Med. Oncol., 31, 786.

    Article  CAS  PubMed  Google Scholar 

  50. Quan, C., Cha, E.–J., Lee, H.–L., Han, K. H., Lee, K. M., and Kim, W.–J. (2006) Enhanced expression of peroxiredox–in I and VI correlates with development, recurrence and pro–gression of human bladder cancer, J. Urol., 175, 1512–1516.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, K., Yu, M., Han, S., Oh, I., Choi, Y.–J., Kim, S., Yoon, K., Jung, M., and Choe, W. (2009) Expression of human peroxiredoxin isoforms in response to cervical car–cinogenesis, Oncol. Rep., 21, 1391–1396.

    CAS  PubMed  Google Scholar 

  52. Chhipa, R. R., Lee, K.–S., Onate, S., Wu, Y., and Ip, C. (2009) Prx1 enhances androgen receptor function in prostate cancer cells by increasing receptor affinity to dihy–drotestosterone, Mol. Cancer Res., 7, 1543–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu, G., Li, J., Zhao, Y., Liu, N., Zhu, X., Liu, Q., Wei, D., and Gao, C. (2016) Identification and verification of PRDX1 as an inflammation marker for colorectal cancer progression, Am. J. Transl. Res., 8, 842–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Trzeciecka, A., Klossowski, S., Bajor, M., Zagozdzon, R., Gaj, P., Muchowicz, A., Malinowska, A., Czerwoniec, A., Barankiewicz, J., Domagala, A., Chlebowska, J., Prochorec–Sobieszek, M., Winiarska, M., Ostaszewski, R., Gwizdalska, I., Golab, J., Nowis, D., and Firczuk, M. (2016) Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma, Oncotarget, 7, 1717–1731.

    Article  PubMed  Google Scholar 

  55. Hintsala, H. R., Soini, Y., Haapasaari, K.–M., and Karihtala, P. (2015) Dysregulation of redox–state–regulat–ing enzymes in melanocytic skin tumours and the sur–rounding microenvironment, Histopathology, 67, 348–357.

    Article  PubMed  Google Scholar 

  56. Park, J. H., Kim, Y. S., Lee, H. L., Shim, J. Y., Lee, K. S., Oh, Y. J., Shin, S. S., Choi, Y. H., Park, K. J., Park, R. W., and Hwang, S. C. (2006) Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung, Respirology, 11, 269–275.

    Article  PubMed  Google Scholar 

  57. Wang, T., Diaz, A. J. G., and Yen, Y. (2014) The role of per–oxiredoxin II in chemoresistance of breast cancer cells, Breast Cancer Targets Ther., 6, 73–80.

    Article  CAS  Google Scholar 

  58. Park, Y.–H., Kim, S.–U., Kwon, T.–H., Kim, J.–M., Song, I.–S., Shin, H.–J., Lee, B.–K., Bang, D.–H., Lee, S.–J., Lee, D.–S., Chang, K.–T., Kim, B.–Y., and Yu, D.–Y. (2016) Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway, Oncogene, 35, 3503–3513.

    Article  CAS  PubMed  Google Scholar 

  59. Memon, A. A., Chang, J. W., Oh, B. R., and Yoo, Y. J. (2005) Identification of differentially expressed proteins during human urinary bladder cancer progression, Cancer Detect. Prev., 29, 249–255.

    Article  CAS  PubMed  Google Scholar 

  60. Lee, D. J., Kang, D. H., Choi, M., Choi, Y. J., Lee, J. Y., Park, J. H., Park, Y. J., Lee, K. W., and Kang, S. W. (2013) Peroxiredoxin–2 represses melanoma metastasis by increas–ing E–cadherin/β–catenin complexes in adherens junc–tions, Cancer Res., 73, 4744–4757.

    Article  CAS  PubMed  Google Scholar 

  61. Nonn, L., Berggren, M., and Powis, G. (2003) Increased expression of mitochondrial peroxiredoxin–3 (thioredoxin peroxidase–2) protects cancer cells against hypoxia and drug–induced hydrogen peroxide–dependent apoptosis, Mol. Cancer Res., 1, 682–689.

    CAS  PubMed  Google Scholar 

  62. Karihtala, P., Mantyniemi, A., Kang, S. W., Kinnula, V. L., and Soini, Y. (2003) Peroxiredoxins in breast carcinoma, Clin. Cancer Res., 9, 3418–3424.

    CAS  PubMed  Google Scholar 

  63. Wang, Y.–G., Li, L., Liu, C.–H., Hong, S., and Zhang, M.–J. (2014) Peroxiredoxin 3 is resistant to oxidation–induced apoptosis of Hep–3b cells, Clin. Transl. Oncol., 16, 561–566.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, X., Wang, H., and Li, X. (2013) Peroxiredoxin III protein expression is associated with platinum resistance in epithelial ovarian cancer, Tumour Biol., 34, 2275–2281.

    Article  CAS  PubMed  Google Scholar 

  65. Byun, J. M., Kim, S. S., Kim, K. T., Kang, M. S., Jeong, D. H., Lee, D. S., Jung, E. J., Kim, Y. N., Han, J., Song, I. S., Lee, K. B., and Sung, M. S. (2018) Overexpression of peroxiredoxin–3 and–5 is a potential biomarker for progno–sis in endometrial cancer, Oncol. Lett., 15, 5111–5118.

    PubMed  PubMed Central  Google Scholar 

  66. Hu, J.–X., Gao, Q., and Li, L. (2013) Peroxiredoxin 3 is a novel marker for cell proliferation in cervical cancer, Biomed. Reports, 1, 228–230.

    Article  CAS  Google Scholar 

  67. Whitaker, H. C., Patel, D., Howat, W. J., Warren, A. Y., Kay, J. D., Sangan, T., Marioni, J. C., Mitchell, J., Aldridge, S., Luxton, H. J., Massie, C., Lynch, A. G., and Neal, D. E. (2013) Peroxiredoxin–3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress, Br. J. Cancer, 109, 983–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, X. Y., Fu, Z. X., and Wang, X. H. (2010) Peroxi–redox–ins in colorectal neoplasms, Histol. Histopathol., 25, 1297–1303.

    CAS  PubMed  Google Scholar 

  69. Kim, T. H., Song, J., Alcantara Llaguno, S. R., Murnan, E., Liyanarachchi, S., Palanichamy, K., Yi, J.–Y. Y., Viapiano, M. S., Nakano, I., Yoon, S. O., Wu, H., Parada, L. F., and Kwon, C.–H. H. (2012) Suppression of peroxire–doxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth, PLoS One, 7, e42818.

    Google Scholar 

  70. Chang, K.–P., Yu, J.–S., Chien, K.–Y., Lee, C.–W., Liang, Y., Liao, C.–T., Yen, T.–C., Lee, L.–Y., Huang, L.–L., Liu, S.–C., Chang, Y.–S., and Chi, L.–M. (2011) Identification of PRDX4 and P4HA2 as metastasis–associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology, J. Proteome Res., 10, 4935–4947.

    Article  CAS  PubMed  Google Scholar 

  71. Chung, J. C., Oh, M. J., Choi, S. H., and Bae, C. D. (2008) Proteomic analysis to identify biomarker proteins in pan–creatic ductal adenocarcinoma, ANZ J. Surg., 78, 245–251.

    Article  PubMed  Google Scholar 

  72. Lin, J.–F., Xu, J., Tian, H.–Y., Gao, X., Chen, Q.–X., Gu, Q., Xu, G.–J., Song, J., and Zhao, F.–K. (2007) Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis, Int. J. Cancer, 121, 2596–2605.

    Article  CAS  PubMed  Google Scholar 

  73. Yi, N., Xiao, M. B., Ni, W. K., Jiang, F., Lu, C. H., and Ni, R.–Z. (2014) High expression of peroxiredoxin 4 affects the survival time of colorectal cancer patients, but is not an independent unfavorable prognostic factor, Mol. Clin. Oncol., 2, 767–772.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Palande, K. K., Beekman, R., van der Meeren, L. E., Beverloo, H. B., Valk, P. J. M., and Touw, I. P. (2011) The antioxidant protein peroxiredoxin 4 is epigenetically down regulated in acute promyelocytic leukemia, PLoS One, 6, 6–11.

    Article  CAS  Google Scholar 

  75. De Simoni, S., Goemaere, J., and Knoops, B. (2008) Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH–SY5Y cells toward MPP+, Neurosci. Lett., 433, 219–224.

    Article  CAS  PubMed  Google Scholar 

  76. Lehtonen, S. T., Svensk, A.–M., Soini, Y., Paakko, P., Hirvikoski, P., Kang, S. W., Saily, M., and Kinnula, V. L. (2004) Peroxiredoxins, a novel protein family in lung can–cer, Int. J. Cancer, 111, 514–521.

    Article  CAS  PubMed  Google Scholar 

  77. Seo, M. J., Liu, X., Chang, M., and Park, J. H. (2012) GATA–binding protein 1 is a novel transcription regulator of peroxiredoxin 5 in human breast cancer cells, Int. J. Oncol., 40, 655–664.

    CAS  PubMed  Google Scholar 

  78. Liu, F., Zhang, Y., Men, T., Jiang, X., Yang, C., Li, H., Wei, X., Yan, D., Feng, G., Yang, J., Bergquist, J., Wang, B., Jiang, W., Mi, J., and Tian, G. (2017) Quantitative pro–teomic analysis of gastric cancer tissue reveals novel pro–teins in platelet–derived growth factor B signaling pathway, Oncotarget, 8, 22059–22075.

    PubMed  PubMed Central  Google Scholar 

  79. Fernandez–Ranvier, G. G., Weng, J., Yeh, R.–F., Shibru, D., Khafnashar, E., Chung, K.–W., Hwang, J., Duh, Q. Y., Clark, O. H., and Kebebew, E. (2008) Candidate diagnos–tic markers and tumor suppressor genes for adrenocortical carcinoma by expression profile of genes on chromosome 11q13, World J. Surg., 32, 873–881.

    Article  PubMed  Google Scholar 

  80. Shiota, M., Izumi, H., Miyamoto, N., Onitsuka, T., Kashiwagi, E., Kidani, A., Hirano, G., Takahashi, M., Ono, M., Kuwano, M., Naito, S., Sasaguri, Y., and Kohno, K. (2008) Ets regulates peroxiredoxin1 and 5 expressions through their interaction with the high–mobility group pro–tein B1, Cancer Sci., 99, 1950–1959.

    CAS  PubMed  Google Scholar 

  81. Su, D. M., Zhang, Q., Wang, X., He, P., Zhu, Y. J., Zhao, J., Rennert, O. M., and Su, Y. A. (2009) Two types of human malignant melanoma cell lines revealed by expres–sion patterns of mitochondrial and survival–apoptosis genes: implications for malignant melanoma therapy, Mol. Cancer Ther., 8, 1292–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, C.–K., Kim, J. H., Moon, M. J., Jung, J. H., Lim, S.–Y., Park, S.–H., Kim, J.–H., Kim, D. G., Jung, H.–W., Cho, B.–K., and Paek, S. H. (2008) Investigation of molec–ular factors associated with malignant transformation of oligodendroglioma by proteomic study of a single case of rapid tumor progression, J. Cancer Res. Clin. Oncol., 134, 255–262.

    Article  CAS  PubMed  Google Scholar 

  83. Yun, H.–M. M., Park, K.–R. R., Lee, H. P., Lee, D. H., Jo, M., Shin, D. H., Yoon, D.–Y. Y., Han, S. B., and Hong, J. T. (2014) PRDX6 promotes lung tumor progression via its GPx and iPLA2 activities, Free Radic. Biol. Med., 69, 367–376.

    Article  CAS  PubMed  Google Scholar 

  84. Chang, X.–Z. Z., Li, D.–Q. Q., Hou, Y.–F. F., Wu, J., Lu, J.–S. S., Di, G.–H. H., Jin, W., Ou, Z.–L. L., Shen, Z.–Z. Z., and Shao, Z.–M. M. (2007) Identification of the func–tional role of peroxiredoxin 6 in the progression of breast cancer, Breast Cancer Res., 9, 1–15.

    Article  CAS  Google Scholar 

  85. Fujita, Y., Nakanishi, T., Hiramatsu, M., Mabuchi, H., Miyamoto, Y., Miyamoto, A., Shimizu, A., and Tanigawa, N. (2006) Proteomics–based approach identifying autoan–tibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma, Clin. Cancer Res., 12, 6415–6420.

    Article  CAS  PubMed  Google Scholar 

  86. Hoshino, I., Nagata, M., Takiguchi, N., Nabeya, Y., Ikeda, A., Yokoi, S., Kuwajima, A., Tagawa, M., Matsushita, K., Satoshi, Y., and Hideaki, S. (2017) Panel of autoantibodies against multiple tumor–associated antigens for detecting gastric cancer, Cancer Sci., 108, 308–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Walsh, B., Pearl, A., Suchy, S., Tartaglio, J., Visco, K., and Phelan, S. A. (2009) Overexpression of Prdx6 and resist–ance to peroxide–induced death in Hepa1–6 cells: Prdx suppression increases apoptosis, Redox Rep., 14, 275–284.

    Article  CAS  PubMed  Google Scholar 

  88. Pak, J. H., Choi, W. H., Lee, H. M., Joo, W.–D., Kim, J.–H., Kim, Y.–T., Kim, Y.–M., and Nam, J.–H. (2011) Peroxiredoxin 6 overexpression attenuates cisplatin–induced apoptosis in human ovarian cancer cells, Cancer Invest., 29, 21–28.

    Article  CAS  PubMed  Google Scholar 

  89. Raatikainen, S., Aaaltomaa, S., Karja, V., and Soini, Y. (2015) Increased peroxiredoxin 6 expression predicts bio–chemical recurrence in prostate cancer patients after radi–cal prostatectomy, Anticancer Res., 6470, 6465–6470.

    Google Scholar 

  90. Schmitt, A., Schmitz, W., Hufnagel, A., Schartl, M., and Meierjohann, S. (2015) Peroxiredoxin 6 triggers melanoma cell growth by increasing arachidonic acid–dependent lipid signalling, Biochem. J., 471, 267–279.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, M., Hou, M., Ge, L., Miao, C., Zhang, J., Jing, X., Shi, N., Chen, T., and Tang, X. (2014) Induction of perox–iredoxin 1 by hypoxia regulates heme oxygenase–1 via NF–κB in oral cancer, PLoS One, 9, e105994.

    Google Scholar 

  92. Chang, J. W., Lee, S. H., Lu, Y., and Yoo, Y. J. (2006) Transforming growth factor–beta1 induces the non–classi–cal secretion of peroxiredoxin–I in A549 cells, Biochem. Biophys. Res. Commun., 345, 118–123.

    Article  CAS  PubMed  Google Scholar 

  93. Riddell, J. R., Bshara, W., Moser, M. T., Spernyak, J. A., Foster, B. A., and Gollnick, S. O. (2011) Peroxiredoxin 1 controls prostate cancer growth through Toll–like receptor 4–dependent regulation of tumor vasculature, Cancer Res., 71, 1637–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aeby, E., Ahmed, W., Redon, S., Simanis, V., and Lingner, J. (2016) Peroxiredoxin 1 protects telomeres from oxidative damage and preserves telomeric DNA for extension by telomerase, Cell Rep., 17, 3107–3114.

    Article  CAS  PubMed  Google Scholar 

  95. Lee, W., Choi, K.–S. S., Riddell, J., Ip, C., Ghosh, D., Park, J.–H. H., and Park, Y.–M. M. (2007) Human perox–iredoxin 1 and 2 are not duplicate proteins: the unique pres–ence of Cys83 in Prx1 underscores the structural and func–tional differences between Prx1 and Prx2, J. Biol. Chem., 282, 22011–22022.

    Article  CAS  PubMed  Google Scholar 

  96. Diaz, A. J. G., Tamae, D., Yen, Y., Li, J., and Wang, T. (2013) Enhanced radiation response in radioresistant MCF–7 cells by targeting peroxiredoxin II, Breast Cancer Targets Ther., 5, 87–101.

    Google Scholar 

  97. Zhang, Y.–G., Wang, L., Kaifu, T., Li, J., Li, X., and Li, L. (2016) Featured article: Accelerated decline of physical strength in peroxiredoxin–3 knockout mice, Exp. Biol. Med., 241, 1395–1400.

    Article  CAS  Google Scholar 

  98. Cunniff, B., Benson, K., Stumpff, J., Newick, K., Held, P., Taatjes, D., Joseph, J., Kalyanaraman, B., and Heintz, N. H. (2013) Mitochondria–targeted nitroxides disrupt mitochondrial architecture and inhibit expression of per–oxiredoxin 3 and FOXM1 in malignant mesothelioma cells, J. Cell. Physiol., 228, 835–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abdul Rahman Sazli, F., Jubri, Z., Abdul Rahman, M., Karsani, S. A., Md Top, A. G., Wan Ngah, W. Z., Abdul, F., Sazli, R., Jubri, Z., Rahman, M. A., and Karsani, S. A. (2015) Gamma–tocotrienol treatment increased peroxire–doxin–4 expression in HepG2 liver cancer cell line, BMC Complement. Altern. Med., 15, 1–7.

    Article  CAS  Google Scholar 

  100. Rafiei, S., Tiedemann, K., Tabaries, S., Siegel, P. M., and Komarova, S. V. (2015) Peroxiredoxin 4: a novel secreted mediator of cancer induced osteoclastogenesis, Cancer Lett., 361, 262–270.

    Article  CAS  PubMed  Google Scholar 

  101. Shah, F., Goossens, E., Atallah, N. M., Grimard, M., Kelley, M. R., and Fishel, M. L. (2017) APE1/Ref–1 knockdown in pancreatic ductal adenocarcinoma–char–acterizing gene expression changes and identifying novel pathways using single–cell RNA sequencing, Mol. Oncol., 11, 1711–1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fisher, A. B., Vasquez–Medina, J. P., Dodia, C., Sorokina, E. M., Tao, J.–Q. Q., and Feinstein, S. I. (2018) Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes, Redox Biol., 14, 41–46.

    Article  CAS  PubMed  Google Scholar 

  103. Liu, G.–Y., Shi, J.–X., Shi, S.–L., Liu, F., Rui, G., Li, X., Gao, L.–B., Deng, X.–L., and Li, Q.–F. (2017) Nucleophosmin regulates intracellular oxidative stress homeostasis via antioxidant PRDX6, J. Cell. Biochem., 118, 4697–4707.

    Article  CAS  PubMed  Google Scholar 

  104. Gallagher, B. M., and Phelan, S. A. (2007) Investigating transcriptional regulation of Prdx6 in mouse liver cells, Free Radic. Biol. Med., 42, 1270–1277.

    Article  CAS  PubMed  Google Scholar 

  105. Park, M. H., Yun, H.–M., Hwang, C. J., Park, S. I., Han, S. B., Hwang, D. Y., Yoon, D.–Y., Kim, S., and Hong, J. T. (2017) Presenilin mutation suppresses lung tumorigene–sis via inhibition of peroxiredoxin 6 activity and expres–sion, Theranostics, 7, 3624–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hwang, K. E., Park, C., Seol, C. H., Hwang, Y. R., Hwang, J. S., Jung, J. W., Choi, K. H., Jeong, E. T., and Kim, H. R. (2013) Elevated Prx1 provides resistance to docetaxel, but is not associated with predictive significance in lung cancer, Tuberc. Respir. Dis. (Seoul), 75, 59–66.

    Article  Google Scholar 

  107. Yo, Y. D., Chung, Y. M., Park, J. K., Ahn, C. M., Kim, S. K., and Kim, H. J. (2002) Synergistic effect of peroxire–doxin II antisense on cisplatin–induced cell death, Exp. Mol. Med., 34, 273–277.

    Article  PubMed  Google Scholar 

  108. Soethoudt, M., Peskin, A. V., Dickerhof, N., Paton, L. N., Pace, P. E., and Winterbourn, C. C. (2014) Interaction of adenanthin with glutathione and thiol enzymes: selectivity for thioredoxin reductase and inhibition of peroxiredoxin recycling, Free Radic. Biol. Med., 77, 331–339.

    Article  CAS  PubMed  Google Scholar 

  109. Wang, F., Lin, F., Zhang, P., Ni, W., Bi, L., Wu, J., and Jiang, L. (2015) Thioredoxin–1 inhibitor, 1–methylpropyl 2–imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines, Oncol. Rep., 33, 967–973.

    Article  CAS  PubMed  Google Scholar 

  110. Kim, H., Lee, G.–R., Kim, J., Baek, J. Y., Jo, Y.–J., Hong, S.–E., Kim, S. H., Lee, J., Lee, H. I., Park, S.–K., Kim, H. M., Lee, H. J., Chang, T.–S., Rhee, S. G., Lee, J.–S., and Jeong, W. (2016) Sulfiredoxin inhibitor induces preferen–tial death of cancer cells through reactive oxygen species–mediated mitochondrial damage, Free Radic. Biol. Med., 91, 264–274.

    Article  CAS  PubMed  Google Scholar 

  111. Yang, Y. J., Baek, J. Y., Goo, J., Shin, Y., Park, J. K., Jang, J. Y., Wang, S. B., Jeong, W., Lee, H. J., Um, H.–D., Lee, S. K., Choi, Y., Rhee, S. G., and Chang, T.–S. (2016) Effective killing of cancer cells through ROS–mediated mechanisms by AMRI–59 targeting peroxiredoxin I, Antioxid. Redox Signal., 24, 453–469.

    Article  CAS  PubMed  Google Scholar 

  112. Kim, T. H., Song, J., Kim, S.–H., Parikh, A. K., Mo, X., Palanichamy, K., Kaur, B., Yu, J., Yoon, S. O., Nakano, I., and Kwon, C.–H. (2014) Piperlongumine treatment inac–tivates peroxiredoxin 4, exacerbates endoplasmic reticu–lum stress, and preferentially kills high–grade glioma cells, Neuro. Oncol., 16, 1354–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jo, M., Yun, H.–M. M., Park, K.–R. R., Park, M. H., Lee, D. H., Cho, S. H., Yoo, H.–S. S., Lee, Y.–M. M., Jeong, H. S., Kim, Y., Jung, J. K., Hwang, B. Y., Lee, M. K., Kim, N. D., Han, S. B., and Hong, J. T. (2014) Anti–can–cer effect of thiacremonone through down regulation of peroxiredoxin 6, PLoS One, 9, 1–10.

    Article  Google Scholar 

  114. Lee, H. L., Park, M. H., Son, D. J., Song, H. S., Kim, J. H., Ko, S. C., Song, M. J., Lee, W. H., Yoon, J. H., Ham, Y. W., Han, S. B., and Hong, J. T. (2015) Anti–cancer effect of snake venom toxin through down regulation of AP–1 mediated PRDX6 expression, Oncotarget, 6, 22139–22151.

    PubMed  PubMed Central  Google Scholar 

  115. Marengo, B., Nitti, M., Furfaro, A. L., Colla, R., Ciucis, C. De, Marinari, U. M., Pronzato, M. A., Traverso, N., and Domenicotti, C. (2016) Redox homeostasis and cellu–lar antioxidant systems: crucial players in cancer growth and therapy, Oxid. Med. Cell. Longev., 6235641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Sharapov.

Additional information

Russian Text © M. G. Sharapov, V. I. Novoselov, 2019, published in Biokhimiya, 2019, Vol. 84, No. 2, pp. 147–171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, M.G., Novoselov, V.I. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. Biochemistry Moscow 84, 79–100 (2019). https://doi.org/10.1134/S0006297919020019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919020019

Keywords

Navigation