Skip to main content
Log in

Analysis of Insulin Analogs and the Strategy of Their Further Development

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We analyzed the structural properties of the peptide hormone insulin and described the mechanism of its physiological action, as well as effects of insulin in type 1 and 2 diabetes. Recently published data on the development of novel insulin preparations based on combining molecular design and genetic engineering approaches are presented. New strategies for creation of long-acting insulin analogs, the mechanisms of functioning of these analogs and their structure are discussed. Side effects of insulin preparations are described, including amyloidogenesis and possible mitogenic effect. The pathways for development of novel insulin analogs are outlined with regard to the current requirements for therapeutic preparations due to the wider occurrence of diabetes of both types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

αCT:

C-terminal domain of insulin receptor α-subunit

BMI:

body mass index

ER:

endoplasmic reticulum

IR:

insulin receptor

IGF-1R:

type 1 insulin-like growth factor receptor

IRA:

insulin receptor isoform A

IRB:

nsulin receptor isoform B

L1:

leucine-rich repeat domain of the insulin receptor α-subunit

NPH:

neutral protamine Hagedorn

PEG:

polyethylene glycol

ThT:

thioflavin T

References

  1. Banting, F. G., and Best, C. J. (1922) The internal secretion of the pancreas, Reprinted in 1972, Vol. 80, to mark 50th anniversary of the discovery, J. Lab. Clin. Med., 7, 251–266.

    CAS  Google Scholar 

  2. De Meyts, P. (2004) Insulin and its receptor: structure, function and evolution, Bioessays, 26, 1351–1362.

    Article  CAS  Google Scholar 

  3. Cabrera, S. M., Chen, Y. G., Hagopian, W. A., and Hessner, M. J. (2016) Blood-based signatures in type 1 diabetes, Diabetologia, 59, 414–425.

    Article  CAS  PubMed  Google Scholar 

  4. Edelman, S., and Pettus, J. (2014) Challenges associated with insulin therapy in type 2 diabetes mellitus, Am. J. Med., 127, 11–16.

    Article  CAS  Google Scholar 

  5. Tkachuk, V. A., and Vorotnikov, A. V. (2014) Molecular mechanisms of development of insulin resistance, Saharnii Diabet, 2, 29–40.

    Google Scholar 

  6. Titov, V. N. (2012) Phylogenesis, etiology and pathogenesis of insulin resistance. Differences from type ii diabetes mellitus, Vestnik RAMN, 4, 65–73.

    Google Scholar 

  7. American Diabetes Association (2012) Diagnosis and classification of diabetes mellitus, Diabetes Care, 35 (Suppl. 1), 64-71.

  8. Chin, J. A., and Sumpio, B. E. (2014) Diabetes mellitus and peripheral vascular disease: diagnosis and management, Clin. Podiatr. Med. Surg., 31, 11–26.

    Article  PubMed  Google Scholar 

  9. Todd, J. A. (1990) Genetic control of autoimmunity in type 1 diabetes, Immunol. Today, 11, 122–129.

    Article  CAS  PubMed  Google Scholar 

  10. Redondo, M. J., Fain, P. R., and Eisenbarth, G. S. (2001) Genetics of type 1A diabetes, Recent Prog. Horm. Res., 56, 69–89.

    Article  CAS  PubMed  Google Scholar 

  11. Ohtsubo, K., Chen, M. Z., Olefsky, J. M., and Marth, J. D. (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport, Nat. Med., 17, 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye, J. (2013) Mechanisms of insulin resistance in obesity, Front. Med., 7, 14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakraborty, C., Doss, C. G. P., Bandyopadhyay, S., and Agoramoorthy, G. (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micromolecules with a major role in type-2 diabetes, Wiley Interdiscip. Rev. RNA, 5, 697–712.

    Article  CAS  PubMed  Google Scholar 

  14. Feng, X., Tang, H., Leng, J., and Jiang, Q. (2014) Suppressors of cytokine signaling (SOCS) and type 2 diabetes, Mol. Biol. Rep., 41, 2265–2274.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, K., Andrikopoulos, S., and Gunton, J. E. (2013) First phase insulin secretion and type 2 diabetes, Curr. Mol. Med., 13, 126–139.

    Article  CAS  PubMed  Google Scholar 

  16. Zaykov, A. N., Mayer, J. P., and DiMarchi, R. D. (2016) Pursuit of a perfect insulin, Nat. Rev. Drug Discov., 15, 425–439.

    Article  CAS  PubMed  Google Scholar 

  17. Home, P., Riddle, M., Cefalu, W. T., Bailey, C. J., Bretzel, R. G., Del Prato, S., Leroith, D., Schernthaner, G., Van Gaal, L., and Raz, I. (2014) Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care, 37, 1499–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dzhavakhishvili, T. S., Romantsova, T. I., and Roik, O. V. (2010) Dynamics of body weight in patients with type 2 diabetes during the first year of insulin therapy, Obes. Metab., 4, 13–19.

    Article  Google Scholar 

  19. Dedov, I. I., Shestakova, M. V., and Moiseev, S. V. (2005) Analogues of insulin, Klin. Farmakol. Ter., 14, 49–55.

    Google Scholar 

  20. Vigneri, R., Squatrito, S., and Sciacca, L. (2010) Insulin and its analogs: actions via insulin and IGF receptors, Acta Diabetol., 47, 271–278.

    Article  CAS  PubMed  Google Scholar 

  21. Bell, G. I., Pictet, R. L., Rutter, W. J., Cordell, B., Tischer, E., and Goodman, H. M. (1980) Sequence of the human insulin gene, Nature, 284, 26–32.

    Article  CAS  PubMed  Google Scholar 

  22. Alarcyn, C., Leahy, J. L., Schuppin, G. T., and Rhodes, C. J. (1995) Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyper-proinsulinemia in a glucose-infusion rat model of noninsulin-dependent diabetes mellitus, J. Clin. Invest., 95, 1032–1039.

    Article  Google Scholar 

  23. Greider, M. H., Howell, S. L., and Lacy, P. E. (1969) Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule, J. Cell Biol., 41, 162–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michael, J., Carroll, R., Swift, H. H., and Steiner, D. F. (1987) Studies on the molecular organization of rat insulin secretory granules, J. Biol. Chem., 262, 16531–16535.

    CAS  PubMed  Google Scholar 

  25. Chang, T. W., and Goldberg, A. L. (1978) The metabolic fates of amino acids and the formation of glutamine in skeletal muscle, J. Biol. Chem., 253, 3685–3693.

    CAS  PubMed  Google Scholar 

  26. Eto, K., Tsubamoto, Y., Terauchi, Y., Sugiyama, T., Kishimoto, T., Takahashi, N., Yamauchi, N., Kubota, N., Murayama, S., Aizawa, T., Akanuma, Y., Aizawa, S., Kasai, H., Yazaki, Y., and Kadowaki, T. (1999) Role of NADH shuttle system in glucose-induced activation of mitochon-drial metabolism and insulin secretion, Science, 283, 981–985.

    Article  CAS  PubMed  Google Scholar 

  27. Bender, K., Newsholme, P., Brennan, L., and Maechler, P. (2006) The importance of redox shuttles to pancreatic beta-cell energy metabolism and function, Biochem. Soc. Trans., 34, 811–814.

    Article  CAS  PubMed  Google Scholar 

  28. Nolan, C. J., Leahy, J. L., Delghingaro-Augusto, V., Moibi, J., Soni, K., Peyot, M. L., Fortier, M., Guay, C., Lamontagne, J., Barbeau, A., Przybytkowski, E., Joly, E., Masiello, P., Wang, S., Mitchell, G. A., and Prentki, M. (2006) Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling, Diabetologia, 49, 2120–2130.

    Article  CAS  PubMed  Google Scholar 

  29. Prentki, M., Joly, E., El-Assaad, W., and Roduit, R. (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipo-toxicity: role in beta-cell adaptation and failure in the etiology of diabetes, Diabetes, 51 (Suppl. 3), 405–413.

    Google Scholar 

  30. Baker, E. N., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. M., Hubbard, R. E., Isaacs, N. W., and Reynolds, C. D. (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution, Philos. Trans. R. Soc. Lond. B Biol. Sci., 319, 369–456.

    Article  CAS  PubMed  Google Scholar 

  31. Wood, S. P., Blundell, T. L., Wollmer, A., Lazarus, N. R., and Neville, R. W. (1975) The relation of conformation and association of insulin to receptor binding; X-ray and circular-dichroism studies on bovine and hystricomorph insulins, Eur. J. Biochem., 55, 531–542.

    Article  CAS  PubMed  Google Scholar 

  32. Williamson, K. L., and Williams, R. J. (1979) Conformational analysis by nuclear magnetic resonance: insulin, Biochemistry, 18, 5966–5972.

    Article  CAS  PubMed  Google Scholar 

  33. Ramesh, V., and Bradbury, J. H. (1987) 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution, Arch. Biochem. Biophys., 258, 112–122.

    Article  CAS  PubMed  Google Scholar 

  34. Wollmer, A., Rannefeld, B., Johansen, B. R., Hejnaes, K. R., Balschmidt, P., and Hansen, F. B. (1987) Phenolpromoted structural transformation of insulin in solution, Biol. Chem. Hoppe. Seyler., 368, 903–911.

    Article  CAS  PubMed  Google Scholar 

  35. Pittman, I., and Tager, H. S. (1995) A spectroscopic investigation of the conformational dynamics of insulin in solution, Biochemistry, 34, 10578–10590.

    Article  CAS  PubMed  Google Scholar 

  36. Bakaysa, D. L., Radziuk, J., Havel, H. A., Brader, M. L., Li, S., Dodd, S. W., Beals, J. M., Pekar, A. H., and Brems, D. N. (1996) Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein–ligand complex, Protein Sci., 5, 2521–2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Meyts, P., and Whittaker, J. (2002) Structural biology of insulin and IGF1 receptors: implications for drug design, Nat. Rev. Drug Discov., 1, 769–783.

    Article  PubMed  CAS  Google Scholar 

  38. Menting, J. G., Whittaker, J., Margetts, M. B., Whittaker, L. J., Kong, G. K., Smith, B. J., Watson, C. J., Zakova, L., KletvHkova, E., Jiracek, J., Chan, S. J., Steiner, D. F., Dodson, G. G., Brzozowski, A. M., Weiss, M. A., Ward, C. W., and Lawrence, M. C. (2013) How insulin engages its primary binding site on the insulin receptor, Nature, 493, 241–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Menting, J. G., Yang, Y., Chan, S. J., Phillips, N. B., Smith, B. J., Whittaker, J., Wickramasinghe, N. P., Whittaker, L. J., Pandyarajan, V., Wan, Z. L., Yadav, S. P., Carroll, J. M., Strokes, N., Roberts, C. T., Jr., Ismail-Beigi, F., Milewski, W., Steiner, D. F., Chauhan, V. S., Ward, C. W., Weiss, M. A., and Lawrence, M. C. (2014) Protective hinge in insulin opens to enable its receptor engagement, Proc. Natl. Acad. Sci. USA, 111, 3395–3404.

    Article  CAS  Google Scholar 

  40. Pandyarajan, V., Smith, B. J., Phillips, N. B., Whittaker, L., Cox, G. P., Wickramasinghe, N., Menting, J. G., Wan, Z. L., Whittaker, J., Ismail-Beigi, F., Lawrence, M. C., and Weiss, M. A. (2014) Aromatic anchor at an invariant hormonereceptor interface, J. Biol. Chem., 289, 34709–34727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pullen, R. A., Lindsay, D. G., Wood, S. P., Tickle, I. J., Blundell, T. L., Wollmer, A., Krail, G., Brandenburg, D., Zahn, H., Gliemann, J., and Gammeltoft, S. (1976) Receptor-binding region of insulin, Nature, 259, 369–373.

    Article  CAS  PubMed  Google Scholar 

  42. Kwok, S. C., Steiner, D. F., Rubenstein, A. H., and Tager, H. S. (1983) Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago), Diabetes, 32, 872–875.

    Article  CAS  PubMed  Google Scholar 

  43. Shoelson, S., Haneda, M., Blix, P., Nanjo, A., Sanke, T., Inouye, K., Steiner, D., Rubenstein, A., and Tager, H. (1983) Three mutant insulins in man, Nature, 302, 540–543.

    Article  CAS  PubMed  Google Scholar 

  44. Shoelson, S., Fickova, M., Haneda, M., Nahum, A., Musso, G., Kaiser, E. T., Rubenstein, A. H., and Tager, H. (1983) Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution, Proc. Natl. Acad. Sci. USA, 80, 7390–7394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobayashi, M., Ohgaku, S., Iwasaki, M., Maegawa, H., Shigeta, Y., and Inouye, K. (1982) Supernormal insulin: [D-PheB24]-insulin with increased affinity for insulin receptors, Biochem. Biophys. Res. Commun., 107, 329–336.

    Article  CAS  PubMed  Google Scholar 

  46. Nanjo, K., Sanke, T., Miyano, M., Okai, K., Sowa, R., Kondo, M., Nishimura, S., Iwo, K., Miyamura, K., and Given, B. D. (1986) Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin, J. Clin. Invest., 77, 514–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Mercola, D. A. (1972) Three-dimensional atomic structure of insulin and its relationship to activity, Diabetes, 21, 492–505.

    Article  CAS  PubMed  Google Scholar 

  48. Cosmatos, A., Cheng, K., Okada, Y., and Katsoyannis, P. G. (1978) The chemical synthesis and biological evaluation of [1-L-alanine-A]-and [1-D-alanine-A] insulins, J. Biol. Chem., 253, 6586–6590.

    CAS  PubMed  Google Scholar 

  49. Geiger, R., Geisen, K., Summ, H. D., and Langer, D. (1975) (A1-D-alanine) insulin, Hoppe. Seylers. Z. Physiol. Chem., 356, 1635–1649.

    Article  CAS  PubMed  Google Scholar 

  50. Geiger, R., Geisen, K., and Summ, H. D. (1982) Exchange of A1-glycine in bovine insulin with L-and D-tryptophan, Hoppe. Seylers. Z. Physiol. Chem., 363, 1231–1239.

    Article  CAS  PubMed  Google Scholar 

  51. Nakagawa, S. H., and Tager, H. S. (1989) Perturbation of insulin–receptor interactions by intramolecular hormone cross-linking. Analysis of relative movement among residues A1, B1, and B29, J. Biol. Chem., 264, 272–279.

    CAS  PubMed  Google Scholar 

  52. Ogawa, H., Burke, G. T., Chanley, J. D., and Katsoyannis, P. G. (1987) Effect of N-methylation of selected peptide bonds on the biological activity of insulin. [2-N-methylisoleucine-A]insulin and [3-N-methylvaline-A]insulin, Int. J. Pept. Protein Res., 30, 460–473.

    Article  CAS  PubMed  Google Scholar 

  53. Schwartz, G., and Katsoyannis, P. G. (1978) Synthesis of des(tetrapeptide B(1-4)) and des(pentapeptide B(1-5)) human insulins. Two biologically active analogues, Biochemistry, 17, 4550–4556.

    Article  CAS  PubMed  Google Scholar 

  54. Nakagawa, S. H., and Tager, H. S. (1991) Implications of invariant residue LeuB6 in insulin–receptor interactions, J. Biol. Chem., 266, 11502–11509.

    CAS  PubMed  Google Scholar 

  55. Schwartz, G. P., Burke, G. T., and Katsoyannis, P. G. (1987) A superactive insulin: [B10-aspartic acid]insulin(human), Proc. Natl. Acad. Sci. USA, 84, 6408–6411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan, S. J., Seino, S., Gruppuso, P. A., Schwartz, R., and Steiner, D. F. (1987) A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia, Proc. Natl. Acad. Sci. USA, 84, 2194–2197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gruppuso, P. A., Gorden, P., Kahn, C. R., Cornblath, M., Zeller, W. P., and Schwartz, R. (1984) Familial hyperproin-sulinemia due to a proposed defect in conversion of proinsulin to insulin, N. Engl. J. Med., 311, 629–634.

    Article  CAS  PubMed  Google Scholar 

  58. Brange, J. Ribel, U., Hansen, J. F., Dodson, G., Hansen, M. T., Havelund, S., Melberg, S. G., Norris, F., Norris, K., and Snel, L. (1988) Monomeric insulins obtained by protein engineering and their medical implications, Nature, 333, 679–682.

    Article  CAS  PubMed  Google Scholar 

  59. Brems, D. N., Alter, L. A., Beckage, M. J., Chance, R. E., DiMarchi, R. D., Green, L. K., Long, H. B., Pekar, A. H., Shields, J. E., and Frank, B. H. (1992) Altering the association properties of insulin by amino acid replacement, Protein Eng., 5, 527–533.

    Article  CAS  PubMed  Google Scholar 

  60. Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Mercola, D. A. (1972) Three-dimensional atomic structure of insulin and its relationship to activity, Diabetes, 21, 492–505.

    Article  CAS  PubMed  Google Scholar 

  61. Nathan, D. M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., Rand, L., and Siebert, C. (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Engl. J. Med., 329, 977–986.

    Article  CAS  PubMed  Google Scholar 

  62. Chou, H. S., Larsson, M., Hsiao, M. H., Chen, Y. C., Roding, M., Nyden, M., and Liu, D. M. (2016) Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: in vitro characterization and in vivo observation, J. Control. Release, 224, 33–42.

    Article  CAS  PubMed  Google Scholar 

  63. Ionova, T. I., Odin, V. I., Nikitina, T. P., Kurbatova, K. A., and Shablovskaya, N. E. (2013) Quality of life and problems posed by hypoglycemia in type 2 diabetes mellitus during oral hypoglycemic therapy, Klin. Med., 9, 34–40.

    Google Scholar 

  64. Hirsch, I. B., Farkas-Hirsch, R., and Skyler, J. S. (1990) Intensive insulin therapy for treatment of type I diabetes, Diabetes Care, 13, 1265–1283.

    Article  CAS  PubMed  Google Scholar 

  65. Gusarov, D. A., Gusarova, V. D., Bayramashvili, D. I., and Mironov, A. F. (2008) Human insulin and its pharmaceutical analogs, Biomed. Khim., 54, 624–642.

    CAS  PubMed  Google Scholar 

  66. Home, P. D. (2012) The pharmacokinetics and pharmaco-dynamics of rapidacting insulin analogues and their clinical consequences, Diabetes Obes. Metab., 14, 780–788.

    Article  CAS  PubMed  Google Scholar 

  67. Oakley, W., Hill, D., and Oakley, N. (1966) Combined use of regular and crystalline protamine (NPH) insulins in the treatment of severe diabetes, Diabetes, 15, 219–222.

    Article  CAS  PubMed  Google Scholar 

  68. Rosenstock, J., Schwartz, S. L., Clark, C. M., Jr., Park, G. D., Donley, D. W., and Edwards, M. B. (2001) Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin, Diabetes Care, 24, 631–636.

    Article  CAS  PubMed  Google Scholar 

  69. Johnson, I. S. (1983) Human insulin from recombinant DNA technology, Science, 219, 632–637.

    Article  CAS  PubMed  Google Scholar 

  70. Peters, A. L., Pollom, R. D., Zielonka, J. S., Carey, M. A., and Edelman, S. V. (2015) Biosimilars and new insulin versions, Endocr. Pract., 21, 1387–1394.

    Article  PubMed  Google Scholar 

  71. Miroshnikov, A. I. (2009) Recipe for Russian insulin, Acta Naturae, 3, 18–20.

    Google Scholar 

  72. Owens, D. R., Landgraf, W., Schmidt, A., Bretzel, R. G., and Kuhlmann, M. K. (2012) The emergence of biosimilar insulin preparations–a cause for concern? Diabetes Technol. Ther., 14, 989–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Habriev, R. U. (2005) in Manual on Experimental (Preclinical) Study of New Pharmacological Substances (Habriev, R. U., ed.) [in Russian], Meditsina, Moscow.

  74. Mironov, A. N. (2012) in Manual on Preclinical Trials of Medicines, Part I (Mironov, A. N., ed.) [in Russian], Grif i K, Moscow.

  75. Mironov, A. N. (2013) in Manual on Expertise of Medicines, Part V. I. (Mironov, A. N., ed.) [in Russian], Grif i K, Moscow.

  76. Atkinson, M. A., Eisenbarth, G. S., and Michels, A. W. (2014) Type 1 diabetes, Lancet, 383, 69–82.

    Article  PubMed  Google Scholar 

  77. Kuraeva, T. L. (2010) Analogues of insulin in achieving compensation and improving the quality of life of children and adolescents with type 1 diabetes mellitus, Saharnii Diabet, 3, 147–152.

    Google Scholar 

  78. Howey, D. C., Bowsher, R. R., Brunelle, R. L., and Woodworth, J. R. (1994) [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin, Diabetes, 43, 396–402.

    CAS  PubMed  Google Scholar 

  79. Ciszak, E., Beals, J. M., Frank, B. H., Baker, J. C., Carter, N. D., and Smith, G. D. (1995) Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin, Structure, 3, 615–622.

    Article  CAS  PubMed  Google Scholar 

  80. Bakaysa, D. L., Radziuk, J., Havel, H. A., Brader, M. L., Li, S., Dodd, S. W., Beals, J. M., Pekar, A. H., and Brems, D. N. (1996) Physicochemical basis for the rapid time-action of Lys B28 Pro B29-insulin: dissociation of a protein–ligand complex, Protein Sci., 5, 2521–2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Becker, R. H. A., Frick, A. D., Burger, F., Potgieter, J. H., and Scholtz, H. (2005) Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese nondiabetic subjects, Exp. Clin. Endocrinol. Diabetes, 113, 435–443.

    CAS  Google Scholar 

  82. Dreyer, M., Prager, R, Robinson, A., Busch, K., Ellis, G., Souhami, E., and Van Leendert, R. (2005) Efficacy and safety of insulin glulisine in patients with type 1 diabetes, Horm. Metab. Res., 37, 702–707.

    Article  CAS  PubMed  Google Scholar 

  83. Pavlova, M. G. (2008) Apidra (insulin glulisin) in the treatment of type 1 diabetes mellitus, Saharnii Diabet, 2, 65–68.

    Google Scholar 

  84. Heinemann, L., Heise, T., Wahl, L. C., Trautmann, M. E., Ampudia, J., Starke, A. A., and Berger, M. (1996) Prandial glycaemia after a carbohydrate-rich meal in type I diabetic patients: using the rapid acting insulin analogue [Lys(B28), Pro(B29)] human insulin, Diabet. Med., 13, 625–629.

    Article  CAS  PubMed  Google Scholar 

  85. Owens, D. R., Matfin, G., and Monnier, L. (2014) Basal insulin analogues in the management of diabetes mellitus: what progress have we made? Diabetes Metab. Res. Rev., 30, 104–119.

    Article  CAS  PubMed  Google Scholar 

  86. Zinman, B. (2013) Newer insulin analogs: advances in basal insulin replacement, Diabetes Obes. Metab., 15 (Suppl. 1), 6–10.

    Article  CAS  PubMed  Google Scholar 

  87. Hallas-Moller, K. (1956) The lente insulins, Diabetes, 5, 7–14.

    Article  CAS  PubMed  Google Scholar 

  88. Heise, T., Nosek, L., Ronn, B. B., Endahl, L., Heinemann, L., Kapitza, C., and Draeger, E. (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes, Diabetes, 53, 1614–1620.

    Article  CAS  PubMed  Google Scholar 

  89. Peterkova, V. A., Kuraeva, T. L., and Titovich, E. V. (2003) Lantus (insulin glargine): real benefits and perspectives of use in pediatrics, Saharnii Diabet, 3, 26–28.

    Google Scholar 

  90. Klimontov, V. V., and Myakina, N. E. (2014) Insulin glargine: pharmacokinetic and pharmacodynamic bases of clinical effect, Saharnii Diabet, 4, 99–107.

    Google Scholar 

  91. Migdalis, I. N. (2011) Insulin analogs versus human insulin in type 2 diabetes, Diabetes Res. Clin. Pract., 93 (Suppl. 1), 102–104.

    Article  CAS  Google Scholar 

  92. Swinnen, S. G., Simon, A. C., Holleman, F., Hoekstra, J. B., and Devries, J. H. (2011) Insulin detemir versus insulin glargine for type 2 diabetes mellitus, Cochrane Database Syst. Rev., 7, 63–83.

    Google Scholar 

  93. Jonassen, I., Havelund, S., Hoeg-Jensen, T., Steensgaard, D. B., Wahlund, P. O., and Ribel, U. (2012) Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin, Pharm. Res., 29, 2104–2114.

    CAS  PubMed  Google Scholar 

  94. Dedov, I. I., and Shestakova, M. V. (2014) Insulin degludec–a new analogue of insulin super-long-acting, Saharnii Diabet, 2, 91–104.

    Google Scholar 

  95. Whittingham, J. L., Havelund, S., and Jonassen, I. (1997) Crystal structure of a prolonged-acting insulin with albumin-binding properties, Biochemistry, 36, 2826–2831.

    Article  CAS  PubMed  Google Scholar 

  96. Sorli, C., Warren, M., Oyer, D., Mersebach, H., Johansen, T., and Gough, S. C. (2013) Elderly patients with diabetes experience a lower rate of nocturnal hypoglycaemia with insulin degludec than with insulin glargine: a meta-analysis of phase IIIa trials, Drugs Aging, 30, 1009–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Henry, R. R., Mudaliar, S., Ciaraldi, T. P., Armstrong, D. A., Burke, P., Pettus, J., Garhyan, P., Choi, S. L., Jacober, S. J., Knadler, M. P., Lam, E. C., Prince, M. J., Bose, N., Porksen, N., Sinha, V. P., and Linnebjerg, H. (2014) Basal insulin peglispro demonstrates preferential hepatic versus peripheral action relative to insulin glargine in healthy subjects, Diabetes Care, 37, 2609–2615.

    Article  CAS  PubMed  Google Scholar 

  98. Mathieu, C., Gillard, P., and Benhalima, K. (2017) Insulin analogues in type 1 diabetes mellitus: getting better all the time, Nat. Rev. Endocrinol., 13, 385–399.

    Article  CAS  PubMed  Google Scholar 

  99. Bergenstal, R. M., Rosenstock, J., Bastyr, E. J., Prince, M. J., Qu, Y., and Jacober, S. J. (2014) Lower glucose variability and hypoglycemia measured by continuous glucose monitoring with novel long-acting insulin LY2605541 versus insulin glargine, Diabetes Care, 37, 659–665.

    Article  CAS  PubMed  Google Scholar 

  100. Caparrotta, T. M., and Evans, M. (2014) PEGylated insulin Lispro, (LY2605541)–a new basal insulin analogue, Diabetes Obes. Metab., 16, 388–395.

    Article  CAS  PubMed  Google Scholar 

  101. Ciaraldi, T. P., and Sasaoka, T. (2011) Review on the in vitro interaction of insulin glargine with the insulin/insulin-like growth factor system: potential implications for metabolic and mitogenic activities, Horm. Metab. Res., 43, 1–10.

    Article  CAS  PubMed  Google Scholar 

  102. Monnier, L., Colette, C., and Owens, D. (2013) Basal insulin analogs: from pathophysiology to therapy. What we see, know, and try to comprehend? Diabetes Metab., 39, 468–476.

    Article  CAS  PubMed  Google Scholar 

  103. Kurapkat, G., Siedentop, M., Gattner, H. G., Hagelstein, M., Brandenburg, D., Grotzinger, J., and Wollmer, A. (1999) The solution structure of a superpotent β-chain-shortened single-replacement insulin analogue, Protein Sci., 8, 499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiracek, J., Zakova, L., Antolikova, E., Watson, C. J., Turkenburg, J. P., Dodson, G. G., and Brzozowski, A. M. (2010) Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues, Proc. Natl. Acad. Sci. USA, 107, 1966–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Phillips, N. B., Wan, Z. L., Whittaker, L., Hu, S. Q., Huang, K., Hua, Q. X., Whittaker, J., Ismail-Beigi, F., and Weiss, M. A. (2010) Supramolecular protein engineering: design of zincstapled insulin hexamers as a long acting depot, J. Biol. Chem., 285, 11755–11759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Berenson, D. F., Weiss, A. R., Wan, Z., and Weiss, M. A. (2011) Insulin analogs for the treatment of diabetes mellitus: therapeutic applications of protein engineering, Ann. N. Y. Acad. Sci., 1243, 40–54.

    Article  Google Scholar 

  107. Morishita, H. (2015) Premixed insulin and intermediate-acting insulin, Nihon Rinsho, 73, 453–457.

    PubMed  Google Scholar 

  108. Arinina, E. E., and Rashid, M. A. (2012) Clinical and economic benefits of using human insulin analogues, Pharmacoeconomics, 5, 41–46.

    Google Scholar 

  109. Dedov, I. I., and Shestakova, M. V. (2014) Insulin degludec/insulin aspart–the first combined preparation of basal and prandial insulin analogues, Saharnii Diabet, 4, 108–119.

    Google Scholar 

  110. Rodionova, T. I., and Orlova, M. M. (2014) Assessment of efficiency of application of various analogues of insulin in treatment of diabetes type 2, Saratov J. Med. Sci. Res., 10, 461–464.

    Google Scholar 

  111. Nilsson, M. R. (2016) Insulin amyloid at injection sites of patients with diabetes, Amyloid, 23, 139–147.

    Article  CAS  PubMed  Google Scholar 

  112. Berhanu, W. M., and Masunov, A. E. (2012) Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models, J. Mol. Model., 18, 1129–1142.

    Article  CAS  PubMed  Google Scholar 

  113. Amdursky, N., Gazit, E., and Rosenman, G. (2012) Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process, Biochem. Biophys. Res. Commun., 419, 232–237.

    Article  CAS  PubMed  Google Scholar 

  114. Brange, J., Andersen, L., Laursen, E. D., Meyn, G., and Rasmussen, E. (1997) Toward understanding insulin fibrillation, J. Pharm. Sci., 86, 517–525.

    Article  CAS  PubMed  Google Scholar 

  115. Yang, Y., Petkova, A., Huang, K., Xu, B., Hua, Q. X., Ye, I. J., Chu, Y. C., Hu, S. Q., Phillips, N. B., Whittaker, J., Ismail-Beigi, F., Mackin, R. B., Katsoyannis, P. G., Tycko, R., and Weiss, M. A. (2010) An Achilles’ heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design, J. Biol. Chem., 285, 10806–10821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, Y., Gonga, H., Sunb, Y., Yana, J., Chenga, B., Zhanga, X., Huang, J., Yua, M., Guoa, Y., Zhengb, L., and Huanga, K. (2012) Dissecting the role of disulfide bonds on the amyloid formation of insulin, Biochem. Biophys. Res. Commun., 423, 373–378.

    Article  CAS  PubMed  Google Scholar 

  117. Huang, K., Maiti, N. C., Phillips, N. B., Carey, P. R., and Weiss, M. A. (2006) Structure-specific effects of protein topology on crossbeta assembly: studies of insulin fibrillation, Biochemistry, 45, 10278–10293.

    Article  CAS  PubMed  Google Scholar 

  118. Fodera, V., Librizzi, F., Groenning, M., Van de Weert, M., and Leone, M. (2008) Secondary nucleation and accessible surface in insulin amyloid fibril formation, J. Phys. Chem. B, 112, 3853–3858.

    Article  CAS  PubMed  Google Scholar 

  119. Groenning, M., Frokjaer, S., and Vestergaard, B. (2009) Formation mechanism of insulin fibrils and structural aspects of the insulin fibrillation process, Curr. Protein Pept. Sci., 10, 509–528.

    Article  CAS  PubMed  Google Scholar 

  120. Ahmad, A., Uversky, V. N., Hong, D., and Fink, A. L. (2005) Early events in the fibrillation of monomeric insulin, J. Biol. Chem., 280, 42669–42675.

    Article  CAS  PubMed  Google Scholar 

  121. Zhou, C., Qi, W., Lewis, E. N., and Carpenter, J. F. (2016) Characterization of sizes of aggregates of insulin analogs and the conformations of the constituent protein molecules: a concomitant dynamic light scattering and raman spectroscopy study, J. Pharm. Sci., 105, 551–558.

    Article  CAS  PubMed  Google Scholar 

  122. Woods, R. J., Alarcon, J., McVey, E., and Pettis, R. J. (2012) Intrinsic fibrillation of fast-acting insulin analogs, J. Diabetes Sci. Technol., 6, 265–276.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Blundell, T., Dodson G., Hodgkin, D., and Mercola, D. (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem., 26, 279–402.

    Article  CAS  Google Scholar 

  124. Selivanova, O. M., Suvorina, M. Y., Surin, A. K., Dovidchenko, N. V., and Galzitskaya, O. V. (2017) Insulin and lispro insulin: what is common and different in their behavior? Curr. Protein Pept. Sci., 18, 57–64.

    Article  CAS  PubMed  Google Scholar 

  125. Selivanova, O. M., and Galzitskaya, O. V. (2012) Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein, Biochemistry (Moscow), 77, 1237–1247.

    Article  CAS  Google Scholar 

  126. Selivanova, O. M., Suvorina, M. Y., Dovidchenko, N. V., Eliseeva, I. A., Surin, A. K., Finkelstein, A. V., Schmatchenko, V. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. II. Experimental application for insulin and Lispro insulin: aggregation morphology, kinetics, and sizes of nuclei, J. Phys. Chem. B, 118, 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  127. Burke, M. J., and Rougvie, M. A. (1972) Cross-β protein structures. I. Insulin fibrils, Biochemistry, 11, 2435–2439.

    Article  CAS  PubMed  Google Scholar 

  128. Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M., and Robinson, C. V. (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy, Protein Sci., 9, 1960–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jimenez, J. L., Nettleton, E. J., Bouchard, M., Robinson, C. V., Dobson, C. M., and Saibil, H. R. (2002) The protofilament structure of insulin amyloid fibrils, Proc. Natl. Acad. Sci. USA, 99, 9196–9201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Koltun, W. L., Waugh, D. F., and Bear, R. S. (1954) An X-ray diffraction investigation of selected types of insulin fibrils, J. Am. Chem. Soc., 76, 413–417.

    Article  CAS  Google Scholar 

  131. Winocour, P. H., Mitchell, W. S., Gush, R. J., Taylor, L. J., and Baker, R. D. (1988) Altered hand skin blood flow in type 1 (insulin-dependent) diabetes mellitus, Diabet. Med., 5, 861–866.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya.

Additional information

Original Russian Text © O. M. Selivanova, S. Yu. Grishin, A. V. Glyakina, A. S. Sadgyan, N. I. Ushakova, O. V. Galzitskaya, 2018, published in Uspekhi Biologicheskoi Khimii, 2018, Vol. 58, pp. 313–346.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selivanova, O.M., Grishin, S.Y., Glyakina, A.V. et al. Analysis of Insulin Analogs and the Strategy of Their Further Development. Biochemistry Moscow 83 (Suppl 1), S146–S162 (2018). https://doi.org/10.1134/S0006297918140122

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918140122

Keywords

Navigation