Skip to main content
Log in

50+ Years of Protein Folding

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The ability of proteins to spontaneously form their spatial structures is a long-standing puzzle in molecular biology. Experimentally measured rates of spontaneous folding of single-domain globular proteins range from microseconds to hours: the difference–10-11 orders of magnitude–is the same as between the lifespan of a mosquito and the age of the Universe. This review (based on the literature and some personal recollections) describes a winding road to understanding spontaneous folding of protein structure. The main attention is given to the free-energy landscape of conformations of a protein chain–especially to the barrier separating its unfolded (U) and the natively folded (N) states–and to physical the-ories of rates of crossing this barrier in both directions: from U to N, and from N to U. It is shown that theories of both these processes come to essentially the same result and outline the observed range of folding and unfolding rates for single-domain globular proteins. In addition, they predict the maximal size of protein domains that fold under solely thermodynamic (rather than kinetic) control, and explain the observed maximal size of “foldable” protein domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anfinsen, C. B., Haber, E., Sela, M., and White, F. H., Jr. (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain, Proc. Natl. Acad. Sci. USA, 47, 1309–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stryer, L. (1975) Biochemistry, Vol. 1, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  3. Creighton, T. E. (1991) Proteins, 2nd Edn., Chaps. 2 and 7, W. H. Freeman & Co, N.Y.

    Google Scholar 

  4. Kolb, V. A., Makeev, E. V., and Spirin, A. S. (1994) Folding of firefly luciferase during translation in a cell-free system, EMBO J., 13, 3631–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1997) Cotranslational folding of globin, J. Biol. Chem., 272, 10646–10651.

    Article  CAS  PubMed  Google Scholar 

  6. Eichmann, C., Preissler, S., Riek, R., and Deuerling, E. (2010) Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy, Proc. Natl. Acad. Sci. USA, 107, 9111–9116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han, Y., David, A., Liu, B., Magadan, J. G., Bennink, J. R., Yewdell, J. W., and Qian, S.-B. (2012) Monitoring cotranslational protein folding in mammalian cells at codon resolution, Proc. Natl. Acad. Sci. USA, 109, 12467–12472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holtkamp, W., Kokic, G., Jager, M., Mittelstaet, J., Komar, A. A., and Rodnina, M. V. (2015) Cotranslational protein folding on the ribosome monitored in real time, Science, 350, 1104–1107.

    Article  CAS  PubMed  Google Scholar 

  9. Flanagan, J. M., Kataoka, M., Shortle, D., and Engelman, D. M. (1992) Truncated staphylococcal nuclease is compact but disordered, Proc. Natl. Acad. Sci. USA, 89, 748–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright, P. E., and Dyson, H. J. (1999) Intrinsically unstructured proteins: reassessing the protein structure-function paradigm, J. Mol. Biol., 293, 321–331.

    Article  CAS  PubMed  Google Scholar 

  11. Uversky, V. N., Gillespie, J. R., and Fink, A. L. (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41, 415–427.

    Article  CAS  PubMed  Google Scholar 

  12. Petsko, G. A., and Ringe, D. (2004) Protein Structure and Function, Chap. 1, New Science Press Ltd., London.

    Google Scholar 

  13. Ellis, R. J., and Hartl, F. U. (1999) Principles of protein folding in the cellular environment, Curr. Opin. Struct. Biol., 9, 102–110.

    Article  CAS  PubMed  Google Scholar 

  14. Libich. D. S., Tugarinov, V., and Clore, G. M. (2015) Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR, Proc. Natl. Acad. Sci. USA, 112, 8817–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marchenko, N. Y., Marchenkov, V. V., Semisotnov, G. V., and Finkelstein, A. V. (2015) Strict experimental evidence that apochaperonin GroEL does not accelerate protein folding, although it does accelerate one of its steps, Proc. Natl. Acad. Sci. USA, 112, E6831–E6832.

    Article  CAS  PubMed  Google Scholar 

  16. Marchenkov, V. V., Sokolovsky, I. V., Kotova, N. V., Galitskaya, O. V., Bochkareva, E. S., Girshovich, A. S., and Semisotnov, G. V. (2004) Interaction of chaperone GroEL with early kinetic intermediates of renaturing proteins inhibits formation of their native structure, Biophysics, 49, 888–895.

    Google Scholar 

  17. Marchenko, N. Y., Garbuzynskiy, S. O., and Semisotnov, G. V. (2009) Molecular chaperones under normal and pathological conditions, in Molecular Pathology of Proteins (Zabolotny, D. I., ed.) Nova Science Publishers, New York, pp. 57–89.

    Google Scholar 

  18. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains, Science, 181, 223–230.

    Article  CAS  PubMed  Google Scholar 

  19. Gutte, B., and Merrifield, R. B. (1969) The total synthesis of an enzyme with ribonuclease A activity, J. Am. Chem. Soc., 91, 501–502.

    Article  CAS  PubMed  Google Scholar 

  20. Levinthal, C. (1968) Are there pathways for protein folding? J. Chim. Phys. Chim. Biol., 65, 44–45.

    Article  Google Scholar 

  21. Levinthal, C. (1969) How to fold graciously, in Mössbauer Spectroscopy in Biological Systems: Proc. of a Meeting held at Allerton House, Monticello, Illinois (Debrunner, P., Tsibris, J. C. M., and Munck, E., eds.) Urbana-Champaign, IL, University of Illinois Press, pp. 22–24.

    Google Scholar 

  22. Privalov, P. L. (1979) Stability of proteins: small globular proteins, Adv. Protein Chem., 33, 167–241.

    Article  CAS  PubMed  Google Scholar 

  23. Sali, A., Shakhnovich, E., and Karplus, M. (1994) Kinetics of protein folding. A lattice model study of the requirements for folding to the native state, J. Mol. Biol., 235, 1614–1636.

    Article  CAS  PubMed  Google Scholar 

  24. Abkevich, V. I., Gutin, A. M., and Shakhnovich, E. I. (1994) Specific nucleus as a transition state for protein folding: evidence from the lattice model, Biochemistry, 33, 10026–10031.

    Article  CAS  PubMed  Google Scholar 

  25. Phillips, D. C. (1966) The three-dimensional structure of an enzyme molecule, Sci. Am., 215, 78–90.

    Article  CAS  PubMed  Google Scholar 

  26. Goldenberg, D. P., and Creighton, T. E. (1983) Circular and circularly permuted forms of bovine pancreatic trypsin inhibitor, J. Mol. Biol., 165, 407–413.

    Article  CAS  PubMed  Google Scholar 

  27. Grantcharova, V. P., Riddle, D. S., Santiago, J. V., and Baker, D. (1998) Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain, Nat. Struct. Biol., 5, 714–720.

    Article  CAS  PubMed  Google Scholar 

  28. Wetlaufer, D. B. (1973) Nucleation, rapid folding, and globular intrachain regions in proteins, Proc. Natl. Acad. Sci. USA, 70, 697–701.

    Article  CAS  PubMed  Google Scholar 

  29. Fulton, K. F., Main, E. R. G., Dagett, V., and Jackson, S. E. (1999) Mapping the interactions present in the transition state for unfolding/folding of FKBP12, J. Mol. Biol., 291, 445–461.

    Article  CAS  PubMed  Google Scholar 

  30. Ptitsyn, O. B. (1973) Stepwise mechanism of organization of protein molecules, Dokl. Acad. Nauk SSSR, 210, 1213–1215.

    CAS  Google Scholar 

  31. Ptitsyn, O. B. (1995) Molten globule and protein folding, Adv. Protein Chem., 47, 83–229.

    Article  CAS  PubMed  Google Scholar 

  32. Privalov, P. L. (1996) Intermediate states in protein folding, J. Mol. Biol., 258, 707–725.

    Article  CAS  PubMed  Google Scholar 

  33. Fersht, A. (1999) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, Chaps. 2, 15, 18, and 19, W. H. Freeman & Co., N.Y.

    Google Scholar 

  34. Melnik, B. S., Marchenkov, V. V., Evdokimov, S. R., Samatova, E. N., and Kotova, N. V. (2008) Multistate protein: determination of carbonic anhydrase free-energy landscape, Biochem. Biophys. Res. Commun., 369, 701–706.

    Article  CAS  PubMed  Google Scholar 

  35. Finkelstein, A. V., and Ptitsyn, O. B. (2016) Protein Physics. A Course of Lectures, 2nd Edn., Chaps. 7, 10, 13, 18, and 19-21, Academic Press, an Imprint of Elsevier Science, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo.

    Google Scholar 

  36. Leopold, P. E., Montal, M., and Onuchic, J. N. (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship, Proc. Natl. Acad. Sci. USA, 89, 8721–8725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolynes, P. G., Onuchic, J. N., and Thirumalai, D. (1995) Navigating the folding routes, Science, 267, 1619–1620.

    Article  CAS  PubMed  Google Scholar 

  38. Dill, K. A., and Chan, H. S. (1997) From Levinthal to pathways to funnels, Nat. Struct. Biol., 4, 10–19.

    Article  CAS  PubMed  Google Scholar 

  39. Bicout, D. J., and Szabo, A. (2000) Entropic barriers, transition states, funnels, and exponential protein folding kinetics: a simple model, Protein Sci., 9, 452–465.

    CAS  PubMed  Google Scholar 

  40. Tanford, C. (1968) Protein denaturation, Adv. Protein Chem., 23, 121–282.

    Article  CAS  PubMed  Google Scholar 

  41. Creighton, T. E. (1978) Experimental studies of protein folding and unfolding, Prog. Biophys. Mol. Biol., 33, 231–297.

    Article  CAS  PubMed  Google Scholar 

  42. Shakhnovich, E. I., and Gutin, A. M. (1990) Implications of thermodynamics of protein folding for evolution of primary sequences, Nature, 346, 773–775.

    Article  CAS  PubMed  Google Scholar 

  43. Gutin, A. M., and Shakhnovich, E. I. (1993) Ground state of random copolymers and the discrete random energy model, J. Chem. Phys., 98, 8174–8177.

    Article  CAS  Google Scholar 

  44. Galzitskaya, O. V., and Finkelstein, A. V. (1995) Folding of chains with random and edited sequences: similarities and differences, Protein Eng., 8, 883–892.

    Article  CAS  PubMed  Google Scholar 

  45. Shakhnovich, E. I. (2006) Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet, Chem. Rev., 106, 1559–1588.

    Article  CAS  PubMed  Google Scholar 

  46. Bryngelson, J. D., and Wolynes, P. G. (1989) Intermediates and barrier crossing in a random energy model (with applications to protein folding), J. Phys. Chem., 93, 6902–6915.

    Article  CAS  Google Scholar 

  47. Go, N., and Abe, H. (1981) Noninteracting local-structure model of folding and unfolding transition in globular proteins. I. Formulation, Biopolymers, 20, 991–1011.

    Article  CAS  PubMed  Google Scholar 

  48. Ngo, J. T., and Marks, J. (1992) Computational complexity of a problem in molecular structure prediction, Protein Eng., 5, 313–321.

    Article  CAS  PubMed  Google Scholar 

  49. Unger, R., and Moult, J. (1993) Finding the lowest free energy conformation of a protein is an NP-hard problem: proof and implications, Bull. Math. Biol., 55, 1183–1198.

    Article  CAS  PubMed  Google Scholar 

  50. Karplus, M. (1997) The Levinthal paradox: yesterday and today, Fold. Des., 2, Suppl. 1, S69–S75.

    Article  CAS  PubMed  Google Scholar 

  51. Nolting, B. (2010) Protein Folding Kinetics: Biophysical Methods, Chaps. 10-12, Springer, N.Y.

    Google Scholar 

  52. Bogatyreva, N. S., and Finkelstein, A. V. (2001) Cunning simplicity of protein folding landscapes, Protein Eng., 14, 521–523.

    Article  CAS  PubMed  Google Scholar 

  53. Zwanzig, R., Szabo, A., and Bagchi, B. (1992) Levinthal’s paradox, Proc. Natl. Acad. Sci. USA, 89, 20–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Finkelstein, A. V. (2002) Cunning simplicity of a hierarchical folding, J. Biomol. Struct. Dyn., 20, 311–313.

    Article  CAS  PubMed  Google Scholar 

  55. Finkelstein, A. V., and Badretdinov, A. Ya. (1997) Physical reasons for fast folding of stable protein spatial structure: resolution of the Levinthal’s paradox, Mol. Biol., 31, 469–477.

    Google Scholar 

  56. Finkelstein, A. V., and Badretdinov, A. Ya. (1997) Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold, Fold. Des., 2, 115–121.

    Article  CAS  PubMed  Google Scholar 

  57. Wolynes, P. G. (1997) Folding funnels and energy land-scapes of larger proteins within the capillarity approximation, Proc. Natl. Acad. Sci. USA, 94, 6170–6175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gutin, A. M., Abkevich, V. I., and Shakhnovich, E. I. (1996) Chain length scaling of protein folding time, Phys. Rev. Lett., 77, 5433–5436.

    Article  CAS  PubMed  Google Scholar 

  59. Zana, R. (1975) On the rate determining step for helix propagation in the helix–coil transition of polypeptides in solution, Biopolymers, 14, 2425–2428.

    Article  CAS  Google Scholar 

  60. Eyring, H. (1935) The activated complex in chemical reactions, J. Chem. Phys., 3, 107–115.

    Article  CAS  Google Scholar 

  61. Pauling, L. (1970) General Chemistry, Chap. 16, W. H. Freeman & Co, Ltd.

    Google Scholar 

  62. Emmanuel, N. M., and Knorre, D. G. (1984) Course of Chemical Kinetics [in Russian], 4th Edn., Chaps. III and V (§§ 2 and 3), Vysshaya Shkola, Moscow.

    Google Scholar 

  63. Landau, L. D., and Lifshits, E. M. (1964) Statistical Physics [in Russian], Nauka, Moscow, p.150.

    Google Scholar 

  64. Galzitskaya, O. V., and Finkelstein, A. V. (1999) A theoretical search for folding/unfolding nuclei in three-dimensional protein structures, Proc. Natl. Acad. Sci. USA, 96, 11299–11304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garbuzynskiy, S. O., Ivankov, D. N., Bogatyreva, N. S., and Finkelstein, A. V. (2013) Golden triangle for folding rates of globular proteins, Proc. Natl. Acad. Sci. USA, 110, 147–150.

    Article  CAS  PubMed  Google Scholar 

  66. Finkelstein, A. V., Badretdin, A. J., Galzitskaya, O. V., Ivankov, D. N., Bogatyreva, N. S., and Garbuzynskiy, S. O. (2017) There and back again: two views on the protein folding puzzle, Phys. Life Rev., doi: 10.1016/j.plrev.2017.01.025.

    Google Scholar 

  67. Shakhnovich, E. I., and Finkelstein, A. V. (1982) To the theory of cooperative transitions in proteins, Dokl. AN SSSR, 267, 1247–1250.

    CAS  Google Scholar 

  68. Jacobson, H., and Stockmayer, W. (1950) Intramolecular reaction in polycondensations. I. The theory of linear systems, J. Chem. Phys., 18, 1600–1606.

    Article  CAS  Google Scholar 

  69. Flory, P. (1969) Statistical Mechanics of Chain Molecules, Chap. 3, Wiley-Interscience, New York.

    Google Scholar 

  70. Fu, B., and Wng, W. (2004) A 20(n1-1/d·log(n)) time algorithm for d-dimensional protein folding in the HP-model, Lecture Notes Comp. Sci., 3142, 630–644.

    Article  Google Scholar 

  71. Steinhofel, K., Skaliotis, A., and Albrecht, A. A. (2006) Landscape analysis for protein folding simulation in the H-P model, Lecture Notes Comp. Sci., 4175, 252–261.

    Article  Google Scholar 

  72. Finkelstein, A. V., and Badretdinov, A. Ya. (1998) Influence of chain knotting on the rate of folding, Fold. Des., 3, 67–68.

    Article  Google Scholar 

  73. Galzitskaya, O. V., Ivankov, D. N., and Finkelstein, A. V. (2001) Folding nuclei in proteins, FEBS Lett., 489, 113–118.

    Article  CAS  PubMed  Google Scholar 

  74. Rollins, G. C., and Dill, K. A. (2014) General mechanism of two-state protein folding kinetics, J. Am. Chem. Soc., 136, 11420–11427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Finkelstein, A. V. (2017) Some additional remarks to the solution of the protein folding puzzle: Reply to comments on “There and back again: two views on the protein folding puzzle”, Phys. Life Rev., doi: 10.1016/j.plrev.2017.06.025.

    Google Scholar 

  76. Bychkova, V. E., Semisotnov, G. V., Balobanov, V. A., and Finkelstein, A. V. (2018) Molten globule: 45 years later, Biochemistry (Moscow), 83, Suppl. 1, S33–S47.

    Article  CAS  Google Scholar 

  77. Debe, D. A., Carlson, M. J., and Goddard, W. A., 3rd. (1999) The topomer-sampling model of protein folding, Proc. Natl. Acad. Sci. USA, 96, 2596–2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Makarov, D. E., and Plaxco, K. W. (2003) The topomer search model: a simple, quantitative theory of two-state protein folding kinetics, Protein Sci., 12, 17–26.

    CAS  PubMed  Google Scholar 

  79. Levitt, M., and Chothia, C. (1976) Structural patterns in globular proteins, Nature, 261, 552–558.

    Article  CAS  PubMed  Google Scholar 

  80. Chothia, C., and Finkelstein, A. V. (1990) The classification and origins of protein folding patterns, Ann. Rew. Biochem., 59, 1007–1039.

    Article  CAS  Google Scholar 

  81. Finkelstein, A. V., and Ptitsyn, O. B. (2012) Proteins Physics. Lection Course with Colored and Stereoscopic Illustrations and Tasks [in Russian], 4th Edn., Chaps. 7, 10, 13, and 18-21, Knizhny Dom “Universitet”, Moscow.

    Google Scholar 

  82. Finkelstein, A. V., and Garbuzynskiy, S. O. (2015) Reduction of the search space for the folding of proteins at the level of formation and assembly of secondary structures: a new view on solution of Levinthal’s paradox, ChemPhysChem, 16, 3373–3378.

    Article  CAS  Google Scholar 

  83. Murzin, A. G., and Finkelstein, A. V. (1988) General architecture of ahelical globule, J. Mol. Biol., 204, 749–770.

    Article  CAS  PubMed  Google Scholar 

  84. Crick, F. H. C. (1953) The packing of ahelices: simple coiled coils, Acta Crystallogr., 6, 689–697.

    Article  CAS  Google Scholar 

  85. Ptitsyn, O. B., and Finkelstein, A. V. (1980) Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding? Quart. Rev. Biophys., 13, 339–386.

    CAS  PubMed  Google Scholar 

  86. Ptitsyn, O. B., and Finkelstein, A. V. (1970) Connection between secondary structure of globular proteins and their primary structure, Biofizika, 15, 757–767.

    CAS  PubMed  Google Scholar 

  87. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol., 292, 195–202.

    Article  CAS  PubMed  Google Scholar 

  88. Finkelstein, A. V., and Garbuzynskiy, S. A. (2016) Solution of Levinthal’s paradox is possible at the level of the formation and assembly of protein secondary structures, Biophysics, 61, 1–5.

    Article  CAS  Google Scholar 

  89. Munoz, V., Thompson, P. A., Hofrichter, J., and Eaton, W. A. (1997) Folding dynamics and mechanism of beta-hair-pin formation, Nature, 390, 196–199.

    Article  CAS  PubMed  Google Scholar 

  90. Mukherjee, S., Chowdhury, P., Bunagan, M. R., and Gai, F. (2008) Folding kinetics of a naturally occurring helical peptide: implication of the folding speed limit of helical proteins, J. Phys. Chem. B, 112, 9146–9150.

    Article  CAS  PubMed  Google Scholar 

  91. Finkelstein, A. V. (2015) Two views on the protein folding puzzle (http://atlasofscience.org/two-views-on-the-protein-folding-puzzle/).

    Google Scholar 

  92. Shakhnovich, E. I., and Gutin, A. M. (1989) Formation of unique structure in polypeptide-chains theoretical investigation with the aid of a replica approach, Biophys. Chem., 34, 187–199.

    Article  CAS  PubMed  Google Scholar 

  93. Finkelstein, A. V. (2014) Physics of Protein Molecules [in Russian], Chap. 9, ANO “Izhevsk Institute of Computational Studies”, Moscow-Izhevsk.

    Google Scholar 

  94. Ubbelode, A. (1965) Melting and Crystal Structure, Clarendon Press, UK.

    Google Scholar 

  95. Slezov, V. V. (2009) Kinetics of First-Order Phase Transitions, Chaps. 3-5, and 8, Wiley-VCH, Weiheim.

    Book  Google Scholar 

  96. Thirumalai, D. (1995) From minimal models to real proteins: time scales for protein folding kinetics, J. Phys. I. (Orsay, Fr.), 5, 1457–1469.

    Article  CAS  Google Scholar 

  97. Murzin, A. G. (2008) Metamorphic proteins, Science, 320, 1725–1726.

    Article  CAS  PubMed  Google Scholar 

  98. Tsutsui, Y., Cruz, R. D., and Wintrode, P. L. (2012) Folding mechanism of the metastable serpin α1-antitrypsin, Proc. Natl. Acad. Sci. USA, 109, 4467–4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Plaxco, K. W., Simons, K. T., and Baker, D. (1998) Contact order, transition state placement and the refolding rates of single domain proteins, J. Mol. Biol., 277, 985–994.

    CAS  PubMed  Google Scholar 

  100. Nolting, B., Schalike, W., Hampel, P., Grundig, F., Gantert, S., Sips, N., Bandlow, W., and Qi, P. X. (2003) Structural determinants of the rate of protein folding, J. Theor. Biol., 223, 299–307.

    Article  CAS  PubMed  Google Scholar 

  101. Ivankov, D. N., Garbuzynskiy, S. O., Alm, E., Plaxco, K. W., Baker, D., and Finkelstein, A. V. (2003) Contact order revisited: influence of protein size on the folding rate, Protein Sci., 12, 2057–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ivankov, D. N., Bogatyreva, N. S., Lobanov, M. Yu., and Galzitskaya, O. V. (2009) Coupling between properties of the protein shape and the rate of protein folding, PLoS One, 4, e6476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Corrales, M., Cusco, P., Usmanova, D. R., Chen, H. C., Bogatyreva, N. S., Filion, G. J., and Ivankov, D. N. (2015) Machine learning: how much does it tell about protein folding rates? PLoS One, 10, e0143166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Finkelstein.

Additional information

Original Russian Text © A. V. Finkelstein, 2018, published in Uspekhi Biologicheskoi Khimii, 2018, Vol. 58, pp. 7–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finkelstein, A.V. 50+ Years of Protein Folding. Biochemistry Moscow 83 (Suppl 1), S3–S18 (2018). https://doi.org/10.1134/S000629791814002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791814002X

Keywords

Navigation