Skip to main content
Log in

Import of Proteins and Nucleic Acids into Mitochondria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Many mitochondrial genes have been transferred to the nucleus in course of evolution. The products of expression of these genes, being still necessary for organelle function, are imported there from the cytosol. Molecular mechanisms of protein import are studied much deeper than those of nucleic acids. The latter, it seems to us, retards the development of mitochondrial genome editing technologies. In this review, we describe mechanisms of DNA, RNA, and protein import into mitochondria of different eukaryotes. The description is given for the natural processes, as well as for artificial targeting of macromolecules into mitochondria for therapy. Also, we discuss different approaches to introduce changes into the mitochondrial DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tyagi, S., Pande, V., and Das, A. (2014) Mitochondrial genome sequence diversity of Indian Plasmodium falci-parum isolates, Mem. Inst. Oswaldo Cruz, 109, 494–498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kitazaki, K., and Kubo, T. (2010) Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome, J. Bot., 2010, 1–12.

    Article  CAS  Google Scholar 

  3. Sichertz-Ponten, T., Kurland, C. G., and Andersson, S. G. (1998) A phylogenetic analysis of the cytochrome b and cytochrome c oxidase I genes supports an origin of mito-chondria from within the Rickettsiaceae, Biochim. Biophys. Acta, 1365, 545–551.

    Article  Google Scholar 

  4. Ellis, J. (1982) Promiscuous DNA-chloroplast genes inside plant mitochondria, Nature, 299, 678–679.

    Article  PubMed  CAS  Google Scholar 

  5. Sangare, A., Lonsdale, D., Weil, J. H., and Grienenberger, J. M. (1989) Sequence analysis of the tRNATyr and tRNALys genes and evidence for the transcription of a chloroplast-like tRNAMet in maize mitochondria, Curr. Genet., 16, 195–201.

    Article  PubMed  CAS  Google Scholar 

  6. Paillard, M., Sederoff, P. R., and Levings, C. S. (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S-cytoplasm of maize, EMBO J., 4, 1125–1128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Goraczyniak, R. M., and Augustyniak, H. (1991) Properties of lupin mitochondrial plasmid-like DNAs and nucleotide sequence of a new minicircular DNA, Plant Sci., 79, 173–179.

    Article  Google Scholar 

  8. Kuzmin, E. V., and Levchenko, I. V. (1987) S1 plasmid from cms-S-maize mitochondria encodes a viral type DNA-polymerase, Nucleic Acids Res., 15, 6758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Saumitou-Laprade, P., Pannebecker, G., Maggouta, F., Jean, R., and Michaelis, G. (1989) A linear 10.4 kb plasmid in the mitochondria of Beta maritima, Curr. Genet., 16, 181–186.

    Article  CAS  Google Scholar 

  10. Konstantinov, Yu. M., Podsosonny, V. A., and Lutsenko, G. N. (1988) Synthesis of bacterial vector plasmid pBR322 DNA in isolated maize mitochondria, Dokl. AN SSSR, 298, 502–504.

    CAS  Google Scholar 

  11. Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2003) Plant mitochondria actively import DNA via the permeability transition pore complex, EMBO J., 22, 1245–1254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ibrahim, N., Handa, H., Cosset, A., Koulintchenko, M., Konstantinov, Y., Lightowlers, R. N., Dietrich, A., and Weber-Lotfi, F. (2011) DNA delivery to mitochondria: sequence specificity and energy enhancement, Pharm. Res., 28, 2871–2882.

    Article  PubMed  CAS  Google Scholar 

  13. Weber-Lotfi, F., Ibrahim, N., Boesch, P., Cosset, A., Konstantinov, Y., Lightowlers, R. N., and Dietrich, A. (2009) Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import, Biochim. Biophys. Acta, 1787, 320–327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Koulintchenko, M., Temperley, R. J., Mason, P. A., Dietrich, A., and Lightowlers, R. N. (2006) Natural com-petence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Hum. Mol. Genet., 15, 143–154.

    Article  PubMed  CAS  Google Scholar 

  15. Mannella, C. A., Forte, M., and Colombini, M. (1992) Toward the molecular structure of the mitochondrial chan-nel, VDAC, J. Bioenerg. Biomembr., 24, 7–19.

    Article  PubMed  CAS  Google Scholar 

  16. Yehezkel, G., Abu-Hamad, S., and Shoshan-Barmatz, V. (2007) An N-terminal nucleotide-binding site in VDAC1: involvement in regulating mitochondrial function, J. Cell. Physiol., 212, 551–561.

    Article  PubMed  CAS  Google Scholar 

  17. Salinas, T., Duchene, A. M., Delage, L., Nilsson, S., Glaser, E., Zaepfel, M., and Marechal-Drouard, L. (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria, Proc. Natl. Acad. Sci. USA, 103, 18362–18367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Weber-Lotfi, F., Koulintchenko, M. V., Ibrahim, N., Hammann, P., Mileshina, D. V., Konstantinov, Y. M., and Dietrich, A. (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways, Biochim. Biophys. Acta, 1853, 3165–3181.

    Article  PubMed  CAS  Google Scholar 

  19. Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978–2021.

    Article  PubMed  CAS  Google Scholar 

  20. Weissig, V., Lasch, J., Erdos, G., Meyer, H. W., Rowe, T. C., and Hughes, J. (1998) DQAsomes: a novel potential drug and gene delivery system made from Dequalinium, Pharm. Res., 15, 334–337.

    Article  PubMed  CAS  Google Scholar 

  21. D’Souza, G. G., Boddapati, S. V., and Weissig, V. (2005) Mitochondrial leader sequence–plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria, Mitochondrion, 5, 352–358.

    Article  PubMed  CAS  Google Scholar 

  22. Boddapati, S. V., Tongcharoensirikul, P., Hanson, R. N., D’Souza, G. G., Torchilin, V. P., and Weissig, V. (2005) Mitochondriotropic liposomes, J. Liposome Res., 15, 49–58.

    Article  PubMed  CAS  Google Scholar 

  23. Vestweber, D., and Schatz, G. (1989) DNA–protein conju-gates can enter mitochondria via the protein import path-way, Nature, 338, 170–172.

    Article  PubMed  CAS  Google Scholar 

  24. Collombet, J. M., Wheeler, V. C., Vogel, F., and Coutelle, C. (1997) Introduction of plasmid DNA into isolated mito-chondria by electroporation. A novel approach toward gene correction for mitochondrial disorders, J. Biol. Chem., 272, 5342–5347.

    Article  PubMed  CAS  Google Scholar 

  25. Yoon, Y. G., and Koob, M. D. (2003) Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria, Nucleic Acids Res., 31, 1407–1415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yoon, Y. G., and Koob, M. D. (2005) Transformation of isolated mammalian mitochondria by bacterial conjuga-tion, Nucleic Acids Res., 33, 139.

    Article  CAS  Google Scholar 

  27. Khan, S. M., and Bennett, J. P., Jr. (2004) Development of mitochondrial gene replacement therapy, J. Bioenerg. Biomembr., 36, 387–393.

    Article  PubMed  CAS  Google Scholar 

  28. Keeney, P. M., Quigley, C. K., Dunham, L. D., Papageorge, C. M., Iyer, S., Thomas, R. R., Schwarz, K. M., Trimmer, P. A., Khan, S. M., Portell, F. R., Bergquist, K. E., and Bennett, J. P., Jr. (2009) Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model, Hum. Gene Ther., 20, 897–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Johnston, S. A., Anziano, P. Q., Shark, K., Sanford, J. C., and Butow, R. A. (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles, Science, 240, 1538–1541.

    Article  PubMed  CAS  Google Scholar 

  30. Remacle, C., Cardol, P., Coosemans, N., Gaisne, M., and Bonnefoy, N. (2006) High-efficiency biolistic transforma-tion of Chlamydomonas mitochondria can be used to insert mutations in complex I genes, Proc. Natl. Acad. Sci. USA, 103, 4771–4776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yu, H., Koilkonda, R. D., Chou, T. H., Porciatti, V., Ozdemir, S. S., Chiodo, V., Boye, S. L., Boye, S. E., Hauswirth, W. W., Lewin, A. S., and Guy, J. (2012) Gene delivery to mitochondria by targeting modified adenoasso-ciated virus suppresses Leber’s hereditary optic neuropathy in a mouse model, Proc. Natl. Acad. Sci. USA, 109, 1238–1247.

    Article  Google Scholar 

  32. Calvo, S. E., Clauser, K. R., and Mootha, V. K. (2016) MitoCarta2.0: an updated inventory of mammalian mito-chondrial proteins, Nucleic Acids Res., 44, 1251–1257.

    Article  CAS  Google Scholar 

  33. Lee, C. M., Sedman, J., Neupert, W., and Stuart, R. A. (1999) The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal, J. Biol. Chem., 274, 20937–20942.

    PubMed  CAS  Google Scholar 

  34. Young, J. C., Hoogenraad, N. J., and Hartl, F. U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver prepro-teins to the mitochondrial import receptor Tom70, Cell, 112, 41–50.

    Article  PubMed  CAS  Google Scholar 

  35. Moczko, M., Bomer, U., Kubrich, M., Zufall, N., Honlinger, A., and Pfanner, N. (1997) The inter-mem-brane space domain of mitochondrial Tom22 functions as a trans-binding site for preproteins with N-terminal targeting sequences, Mol. Cell. Biol., 17, 6574–6584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and Kohda, D. (2000) Structural basis of presequence recognition by the mitochondrial pro-tein import receptor Tom20, Cell, 100, 551–560.

    Article  PubMed  CAS  Google Scholar 

  37. Wu, Y., and Sha, B. (2006) Crystal structure of yeast mito-chondrial outer membrane translocon member Tom70p, Nat. Struct. Mol. Biol., 13, 589–593.

    Article  PubMed  CAS  Google Scholar 

  38. Kunkele, K. P., Heins, S., Dembowski, M., Nargang, F. E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998) The preprotein translocation chan-nel of the outer membrane of mitochondria, Cell, 93, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  39. Dietmeier, K., Honlinger, A., Bomer, U., Dekker, P. J., Eckerskorn, C., Lottspeich, F., Kubrich, M., and Pfanner, N. (1997) Tom5 functionally links mitochondrial prepro-tein receptors to the general import pore, Nature, 388, 195–200.

    Article  PubMed  CAS  Google Scholar 

  40. Model, K., Meisinger, C., Prinz, T., Wiedemann, N., Truscott, K. N., Pfanner, N., and Ryan, M. T. (2001) Multistep assembly of the protein import channel of the mitochondrial outer membrane, Nat. Struct. Biol., 8, 361–370.

    Article  PubMed  CAS  Google Scholar 

  41. Wiedemann, N., Pfanner, N., and Ryan, M. T. (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria, EMBO J., 20, 951–960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wiedemann, N., Truscott, K. N., Pfannschmidt, S., Guiard, B., Meisinger, C., and Pfanner, N. (2004) Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway, J. Biol. Chem., 279, 18188–18194.

    Article  PubMed  CAS  Google Scholar 

  43. Kutik, S., Stojanovski, D., Becker, L., Becker, T., Meinecke, M., Kruger, V., Prinz, C., Meisinger, C., Guiard, B., Wagner, R., Pfanner, N., and Wiedemann, N. (2008) Dissecting membrane insertion of mitochondrial β-barrel proteins, Cell, 132, 1011–1024.

    Article  PubMed  CAS  Google Scholar 

  44. Waizenegger, T., Habib, S. J., Lech, M., Mokranjac, D., Paschen, S. A., Hell, K., Neupert, W., and Rapaport, D. (2004) Tob38, a novel essential component in the biogene-sis of β-barrel proteins of mitochondria, EMBO Rep., 5, 704–709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Meisinger, C., Rissler, M., Chacinska, A., Szklarz, L. K., Milenkovic, D., Kozjak, V., Schonfisch, B., Lohaus, C., Meyer, H. E., Yaffe, M. P., Guiard, B., Wiedemann, N., and Pfanner, N. (2004) The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane, Dev. Cell, 7, 61–71.

    Article  PubMed  CAS  Google Scholar 

  46. Meisinger, C., Wiedemann, N., Rissler, M., Strub, A., Milenkovic, D., Schonfisch, B., Muller, H., Kozjak, V., and Pfanner, N. (2006) Mitochondrial protein sorting: dif-ferentiation of β-barrel assembly by Tom7-mediated segre-gation of Mdm10, J. Biol. Chem., 281, 22819–22826.

    Article  PubMed  CAS  Google Scholar 

  47. Waizenegger, T., Schmitt, S., Zivkovic, J., Neupert, W., and Rapaport, D. (2005) Mim1, a protein required for the assembly of the TOM complex of mitochondria, EMBO Rep., 6, 57–62.

    Article  PubMed  CAS  Google Scholar 

  48. Boldogh, I. R., Nowakowski, D. W., Yang, H. C., Chung, H., Karmon, S., Royes, P., and Pon, L. A. (2003) A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskele-ton-based segregation machinery, Mol. Biol. Cell., 14, 4618–4627.

    PubMed  CAS  Google Scholar 

  49. Meisinger, C., Pfannschmidt, S., Rissler, M., Milenkovic, D., Becker, T., Stojanovski, D., Youngman, M. J., Jensen, R. E., Chacinska, A., Guiard, B., Pfanner, N., and Wiedemann, N. (2007) The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria, EMBO J., 26, 2229–2239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Becker, T., Pfannschmidt, S., Guiard, B., Stojanovski, D., Milenkovic, D., Kutik, S., Pfanner, N., Meisinger, C., and Wiedemann, N. (2008) Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors, J. Biol. Chem., 283, 120–127.

    Article  PubMed  CAS  Google Scholar 

  51. Stojanovski, D., Guiard, B., Kozjak-Pavlovic, V., Pfanner, N., and Meisinger, C. (2007) Alternative function for the mitochondrial SAM complex in biogenesis of α-helical TOM proteins, J. Cell Biol., 179, 881–893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chacinska, A., Pfannschmidt, S., Wiedemann, N., Kozjak, V., Sanjuan Szklarz, L. K., Schulze-Specking, A., Truscott, K. N., Guiard, B., Meisinger, C., and Pfanner, N. (2004) Essential role of Mia40 in import and assembly of mito-chondrial intermembrane space proteins, EMBO J., 23, 3735–3746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., and Herrmann, J. M. (2005) A disulfide relay system in the intermembrane space of mito-chondria that mediates protein import, Cell, 121, 1059–1069.

    Article  PubMed  CAS  Google Scholar 

  54. Chacinska, A., Rehling, P., Guiard, B., Frazier, A. E., Schulze-Specking, A., Pfanner, N., Voos, W., and Meisinger, C. (2003) Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in for-mation of a TOM–TIM–preprotein supercomplex, EMBO J., 22, 537–5381.

    Article  Google Scholar 

  55. Donzeau, M., Kґaldi, K., Adam, A., Paschen, S., Wanner, G., Guiard, B., Bauer, M. F., Neupert, W., and Brunner, M. (2000) Tim23 links the inner and outer mitochondrial membranes, Cell, 101, 401–412.

    Article  PubMed  CAS  Google Scholar 

  56. Geissler, A., Chacinska, A., Truscott, K. N., Wiedemann, N., Brandner, K., Sickmann, A., Meyer, H. E., Meisinger, C., Pfanner, N., and Rehling, P. (2002) The mitochondrial pre-sequence translocase. An essential role of Tim50 in directing preproteins to the import channel, Cell, 111, 507–518.

    Article  PubMed  CAS  Google Scholar 

  57. Qian, X., Gebert, M., Hopker, J., Yan, M., Li, J., Wiedemann, N., van der Laan, M., Pfanner, N., and Sha, B. (2011) Structural basis for the function of Tim50 in the mitochondrial presequence translocase, J. Mol. Biol., 411, 513–519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Schulz, C., Lytovchenko, O., Melin, J., Chacinska, A., Guiard, B., Neumann, P., Ficner, R., Jahn, O., Schmidt, B., and Rehling, P. (2011) Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex, J. Cell Biol., 195, 643–656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Meinecke, M., Wagner, R., Kovermann, P., Guiard, B., Mick, D. U., Hutu, D. P., Voos, W., Truscott, K. N., Chacinska, A., Pfanner, N., and Rehling, P. (2006) Tim50 maintains the permeability barrier of the mitochondrial inner membrane, Science, 312, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  60. Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., and Endo, T. (2011) In vivo protein interaction mapping of a mitochondrial translocator protein Tom22 at work, Proc. Natl. Acad. Sci. USA, 108, 15179–15183.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chacinska, A., Lind, M., Frazier, A. E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H. E., Truscott, K. N., Guiard, B., Pfanner, N., and Rehling, P. (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17, Cell, 120, 817–829.

    Article  PubMed  CAS  Google Scholar 

  62. Mokranjac, D., Popov-Celeketic, D., Hell, K., and Neupert, W. (2005) Role of Tim21 in mitochondrial translo-cation contact sites, J. Biol. Chem., 280, 23437–23440.

    Article  PubMed  CAS  Google Scholar 

  63. Lytovchenko, O., Melin, J., Schulz, C., Kilisch, M., Hutu, D. P., and Rehling, P. (2013) Signal recognition initiates reorganization of the presequence translocase during pro-tein import, EMBO J., 32, 886–898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schneider, H. C., Westermann, B., Neupert, W., and Brunner, M. (1996) The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70–Tim44 interaction driving mitochondrial protein import, EMBO J., 15, 5796–5803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Li, Y., Dudek, J., Guiard, B., Pfanner, N., Rehling, P., and Voos, W. (2004) The presequence translocase-associated protein import motor of mitochondria: Pam16 functions in an antagonistic manner to Pam18, J. Biol. Chem., 279, 38047–38054.

    Article  PubMed  CAS  Google Scholar 

  66. D’Silva, P. R., Schilke, B., Hayashi, M., and Craig, E. A. (2008) Interaction of the J-protein heterodimer, Pam18/Pam16, of the mitochondrial import motor with the trans-locon of the inner membrane, Mol. Biol. Cell, 19, 424–432.

    PubMed  Google Scholar 

  67. van der Laan, M., Chacinska, A., Lind, M., Perschil, I., Sickmann, A., Meyer, H. E., Guiard, B., Meisinger, C., Pfanner, N., and Rehling, P. (2005) Pam17 is required for architecture and translocation activity of the mitochondri-al protein import motor, Mol. Cell. Biol., 25, 7449–7458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Strub, A., Rottgers, K., and Voos, W. (2002) The Hsp70 peptide-binding domain determines the interaction of the ATPase domain with Tim44 in mitochondria, EMBO J., 21, 2626–2635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ting, S. Y., Yan, N. L., Schilke, B. A., and Craig, E. A. (2017) Dual interaction of scaffold protein Tim44 of mito-chondrial import motor with channel-forming translocase subunit Tim23, Elife, 6, 23609.

    Article  Google Scholar 

  70. Mokranjac, D., Berg, A., Adam, A., Neupert, W., and Hell, K. (2007) Association of the Tim14–Tim16 subcomplex with the TIM23 translocase is crucial for function of the mitochondrial protein import motor, J. Biol. Chem., 282, 18037–18045.

    Article  PubMed  CAS  Google Scholar 

  71. Gakh, O., Cavadini, P., and Isaya, G. (2002) Mitochondrial processing peptidases, Biochim. Biophys. Acta, 1592, 63–77.

    Article  PubMed  CAS  Google Scholar 

  72. Naamati, A., Regey-Rudzki, N., Galperin, S., Lill, R., and Pines, O. (2009) Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55, J. Biol. Chem., 284, 30200–30208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Vogtle, F. N., Prinz, C., Kellermann, J., Lottspeich, F., Pfanner, N., and Meisinger, C. (2011) Mitochondrial pro-tein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization, Mol. Biol. Cell, 22, 2135–2143.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G., and Pratje, E. (2002) A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1, J. Mol. Biol., 323, 835–843.

    Article  PubMed  CAS  Google Scholar 

  75. Gebert, M., Schrempp, S. G., Mehnert, C. S., Heißwolf, A. K., Oeljeklaus, S., Ieva, R., Bohnert, M., von der Malsburg, K., Wiese, S., Kleinschroth, T., Hunte, C., Meyer, H. E., Haferkamp, I., Guiard, B., Warscheid, B., Pfanner, N., and van der Laan, M. (2012) Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes, J. Cell Biol., 197, 595–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ieva, R., Schrempp, S. G., Opalinski, L., Wollweber, F., Hoß, P., Heißwolf, A. K., Gebert, M., Zhang, Y., Guiard, B., Rospert, S., Becker, T., Chacinska, A., Pfanner, N., and van der Laan, M. (2014) Mgr2 functions as lateral gate-keeper for preprotein sorting in the mitochondrial inner membrane, Mol. Cell, 56, 641–652.

    Article  PubMed  CAS  Google Scholar 

  77. Davis, A. J., Alder, N. N., Jensen, R. E., and Johnson, A. E. (2007) The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import, Mol. Biol. Cell, 18, 475–486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gebert, N., Chacinska, A., Wagner, K., Guiard, B., Koehler, C. M., Rehling, P., Pfanner, N., and Wiedemann, N. (2008) Assembly of the three small Tim proteins pre-cedes docking to the mitochondrial carrier translocase, EMBO Rep., 9, 548–554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kovermann, P., Truscott, K. N., Guiard, B., Rehling, P., Sepuri, N. B., Muller, H., Jensen, R. E., Wagner, R., and Pfanner, N. (2002) Tim22, the essential core of the mito-chondrial protein insertion complex, forms a voltage-acti-vated and signal-gated channel, Mol. Cell, 9, 363–373.

    Article  PubMed  CAS  Google Scholar 

  80. Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H. E., Kuhlbrandt, W., Wagner, R., Truscott, K. N., and Pfanner, N. (2003) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase, Science, 299, 1747–1751.

    Article  PubMed  CAS  Google Scholar 

  81. Wagner, K., Gebert, N., Guiard, B., Brandner, K., Truscott, K. N., Wiedemann, N., Pfanner, N., and Rehling, P. (2008) The assembly pathway of the mitochon-drial carrier translocase involves four preprotein translocas-es, Mol. Cell. Biol., 28, 4251–4260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D. A., Kulawiak, B., Wirth, C., Zahedi, R. P., Dolezal, P., Wiese, S., Simon, O., Schulze-Specking, A., Truscott, K. N., Sickmann, A., Rehling, P., Guiard, B., Hunte, C., Warscheid, B., van der Laan, M., Pfanner, N., and Wiedemann, N. (2011) Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane, Mol. Cell, 44, 811–818.

    Article  PubMed  CAS  Google Scholar 

  83. Nagley, P., Farrell, L. B., Gearing, D. P., Nero, D., Meltzer, S., and Devenish, R. J. (1988) Assembly of func-tional proton-translocating ATPase complex in yeast mito-chondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle, Proc. Natl. Acad. Sci. USA, 85, 2091–2095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Manfredi, G., Fu, J., Ojaimi, J., Sadlock, J. E., Kwong, J. Q., Guy, J., and Schon, E. A. (2002) Rescue of a deficien-cy in ATP synthesis by transfer of MT-ATP6, a mitochon-drial DNA-encoded gene, to the nucleus, Nat. Genet., 30, 394–399.

    Article  PubMed  CAS  Google Scholar 

  85. Guy, J., Qi, X., Pallotti, F., Schon, E. A., Manfredi, G., Carelli, V., Martinuzzi, A., Hauswirth, W. W., and Lewin, A. S. (2002) Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy, Ann. Neurol., 52, 534–542.

    Article  PubMed  CAS  Google Scholar 

  86. Ojaimi, J., Pan, J., Santra, S., Snell, W. J., and Schon, E. A. (2002) An algal nucleus-encoded subunit of mitochon-drial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit, Mol. Biol. Cell, 13, 3836–3844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tanaka, M., Borgeld, H. J., Zhang, J., Muramatsu, S., Gong, J. S., Yoneda, M., Maruyama, W., Naoi, M., Ibi, T., Sahashi, K., Shamoto, M., Fuku, N., Kurata, M., Yamada, Y., Nishizawa, K., Akao, Y., Ohishi, N., Miyabayashi, S., Umemoto, H., Muramatsu, T., Furukawa, K., Kikuchi, A., Nakano, I., Ozawa, K., and Yagi, K. (2002) Gene therapy for mitochondrial disease by delivering restriction endonu-clease SmaI into mitochondria, J. Biomed. Sci., 9, 534–541.

    PubMed  CAS  Google Scholar 

  88. Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J., and Minczuk, M. (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations, EMBO Mol. Med., 6, 458–466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., and Moraes, C. T. (2013) Specific elimination of mutant mito-chondrial genomes in patient-derived cells by mitoTALENs, Nature Med., 19, 1111–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Van Steeg, H., Oudshoorn, P., Van Hell, B., Polman, J. E., and Grivell, L. A. (1986) Targeting efficiency of a mito-chondrial presequence is dependent on the passenger pro-tein, EMBO J., 5, 3643–3650.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Neupert, W. (2015) A perspective on transport of proteins into mitochondria: a myriad of open questions, J. Mol. Biol., 427, 1135–1158.

    Article  PubMed  CAS  Google Scholar 

  92. Asoh, S., Ohsawa, I., Mori, T., Katsura, K., Hiraide, T., Katayama, Y., Kimura, M., Ozaki, D., Yamagata, K., and Ohta, S. (2002) Protection against ischemic brain injury by protein therapeutics, Proc. Natl. Acad. Sci. USA, 99, 17107–17112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Del Gaizo, V., MacKenzie, J. A., and Payne, R. M. (2003) Targeting proteins to mitochondria using TAT, Mol. Genet. Metab., 80, 170–180.

    Article  PubMed  CAS  Google Scholar 

  94. Rapoport, M., Saada, A., Elpeleg, O., and Lorberboum-Galski, H. (2008) TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochon-dria of patients with LAD deficiency, Mol. Ther., 16, 691–697.

    Article  PubMed  CAS  Google Scholar 

  95. Chiu, N., Chiu, A., and Suyama, Y. (1975) Native and imported transfer RNA in mitochondria, J. Mol. Biol., 99, 37–50.

    Article  PubMed  CAS  Google Scholar 

  96. Rusconi, C. P., and Cech, T. R. (1996) The anticodon is the signal sequence for mitochondrial import of glutamine tRNA in Tetrahymena, Genes Dev., 10, 2870–2880.

    Article  PubMed  CAS  Google Scholar 

  97. Simpson, A. M., Suyama, Y., Dewes, H., Campbell, D. A., and Simpson, L. (1989) Kinetoplastid mitochondria con-tain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function, Nucleic Acids Res., 17, 5427–5445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hancock, K., and Hajduk, S. L. (1990) The mitochondri-al tRNAs of Trypanosoma brucei are nuclear encoded, J. Biol. Chem., 265, 19208–19215.

    PubMed  CAS  Google Scholar 

  99. Tan, T. H., Pach, R., Crausaz, A., Ivens, A., and Schneider, A. (2002) tRNAs in Trypanosoma brucei: genomic organization, expression, and mitochondrial import, Mol. Cell Biol., 22, 3707–3717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Shi, X., Chen, D. H., and Suyama, Y. (1994) A nuclear tRNA gene cluster in the protozoan Leishmania tarentolae and differential distribution of nuclear-encoded tRNAs between the cytosol and mitochondria, Mol. Biochem. Parasitol., 65, 23–37.

    Article  PubMed  CAS  Google Scholar 

  101. Crausaz Esseiva, A., Marechal-Drouard, L., Cosset, A., and Schneider, A. (2004) The T-stem determines the cytosolic or mitochondrial localization of trypanosomal tRNAsMet, Mol. Biol. Cell, 15, 2750–2757.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bhattacharyya, S. N., Mukherjee, S., and Adhya, S. (2000) Mutations in a tRNA import signal define distinct receptors at the two membranes of Leishmania mitochon-dria, Mol. Cell. Biol., 20, 7410–7417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hauser, R., and Schneider, A. (1995) tRNAs are imported into mitochondria of Trypanosoma brucei independently oftheir genomic context and genetic origin, EMBO J., 14, 4212–4220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yermovsky-Kammerer, A. E., and Hajduk, S. L. (1999) In vitro import of a nuclearly encoded tRNA into the mito-chondrion of Trypanosoma brucei, Mol. Cell. Biol., 19, 6253–6259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bouzaidi-Tiali, N., Aeby, E., Charriere, F., Pusnik, M., and Schneider, A. (2007) Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei, EMBO J., 26, 4302–4312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Tschopp, F., Charriere, F., and Schneider, A. (2011) In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import, EMBO Rep., 12, 825–832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Schekman, R. (2010) Editorial expression of concern: a bifunctional tRNA import receptor from Leishmania mitochondria, Proc. Natl. Acad. Sci. USA, 107, 9476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vinogradova, E., Salinas, T., Cognat, V., Remacle, C., and Marechal-Drouard, L. (2009) Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are cor-related with both cytosolic and mitochondrial codon usages, Nucleic Acids Res., 37, 1521–1528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Esseiva, A. C., Naguleswaran, A., Hemphill, A., and Schneider, A. (2004) Mitochondrial tRNA import in Toxoplasma gondii, J. Biol. Chem., 279, 42363–42368.

    Article  PubMed  CAS  Google Scholar 

  110. Pino, P., Aeby, E., Foth, B. J., Sheiner, L., Soldati, T., Schneider, A., and Soldati-Favre, D. (2010) Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet formylation in Apicomplexa, Mol. Microbiol., 76, 706–718.

    Article  PubMed  CAS  Google Scholar 

  111. Sharma, A. (2015) Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase, Biochem. J., 465, 459–469.

    Article  PubMed  CAS  Google Scholar 

  112. Glover, K. E., Spencer, D. F., and Gray, M. W. (2001) Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochon-dria, J. Biol. Chem., 276, 639–648.

    Article  PubMed  CAS  Google Scholar 

  113. Marechal-Drouard, L., Guillemaut, P., Cosset, A., Arbogast, M., Weber, F., Weil, J. H., and Dietrich, A. (1990) Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins, Nucleic Acids Res., 18, 3689–3696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ramamonjisoa, D., Kauffmann, S., Choisne, N., Marechal-Drouard, L., Green, G., Wintz, H., Small, I., and Dietrich, A. (1998) Structure and expression of sever-al bean (Phaseolus vulgaris) nuclear transfer RNA genes: relevance to the process of tRNA import into plant mito-chondria, Plant Mol. Biol., 36, 613–625.

    Article  PubMed  CAS  Google Scholar 

  115. Akashi, K., Hirayama, J., Takenaka, M., Yamaoka, S., Suyama, Y., Fukuzawa, H., and Ohyama, K. (1997) Accumulation of nuclear-encoded tRNA(Thr) (AGU) in mitochondria of the liverwort Marchantia polymorpha, Biochim. Biophys. Acta, 1350, 262–266.

    Article  PubMed  CAS  Google Scholar 

  116. Akashi, K., Sakurai, K., Hirayama, J., Fukuzama, H., and Ohyama, K. (1996) Occurence of nuclear-encoded tRNAIle in mitochondria of the liverwort Marchantia poly-morpha., Curr. Genet., 30, 181–185.

    Article  PubMed  CAS  Google Scholar 

  117. Akashi, K., Takenaka, M., Yamaoka, S., Suyama, Y., Fukuzawa, H., and Ohyama, K. (1998) Coexistence of nuclear DNA-encoded tRNAVal (AAC) and mitochondrial DNA-encoded tRNAVal (UAC) in mitochondria of a liverwort Marchantia polymorpha, Nucleic Acids Res., 26, 2168–2172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Dietrich, A., Marechal-Drouard, L., Carneiro, V., Cosset, A., and Small, I. (1996) A single base change prevents import of cytosolic tRNA (Ala) into mitochondria in transgenic plants, Plant J., 10, 913–918.

    Article  PubMed  CAS  Google Scholar 

  119. Delage, L., Duchene, A. M., Zaepfel, M., and Marechal-Drouard, L. (2003) The anticodon and the D-domain sequences are essential determinants for plant cytosolic tRNAVal import into mitochondria, Plant J., 34, 623–633.

    Article  PubMed  CAS  Google Scholar 

  120. Salinas, T., Schaeffer, C., Marechal-Drouard, L., and Duchene, A. M. (2005) Sequence dependence of tRNA(Gly) import into tobacco mitochondria, Biochimie, 87, 863–872.

    Article  PubMed  CAS  Google Scholar 

  121. Laforest, M. J., Delage, L., and Marechal-Drouard, L. (2005) The T-domain of cytosolic tRNAVal, an essential determinant for mitochondrial import, FEBS Lett., 579, 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  122. Delage, L., Dietrich, A., Cosset, A., and Marechal-Drouard, L. (2003) In vitro import of a nuclearly encoded tRNA into mitochondria of Solanum tuberosum, Mol. Cell. Biol., 23, 4000–4012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Salinas, T., Duchene, A. M., Delage, L., Nilsson, S., Glaser, E., Zaepfel, M., and Marechal-Drouard, L. (2006) The voltage-dependent anion channel, a major compo-nent of the tRNA import machinery in plant mitochon-dria, Proc. Natl. Acad. Sci. USA, 103, 18362–18367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Salinas, T., El Farouk-Ameqrane, S., Ubrig, E., Sauter, C., Duchene, A. M., and Marechal-Drouard, L. (2014) Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs, Nucleic Acids Res., 42, 9937–9948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dorner, M., Altmann, M., Paabo, S., and Morl, M. (2001) Evidence for import of a lysyl-tRNA into marsupial mito-chondria, Mol. Biol. Cell, 12, 2688–2698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Li, K., Smagula, C. S., Parsons, W. J., Richardson, J. A., Gonzalez, M., Hagler, H. K., and Williams, R. S. (1994) Subcellular partitioning of MRP RNA assessed by ultra-structural and biochemical analysis, J. Cell. Biol., 124, 871–882.

    Article  PubMed  CAS  Google Scholar 

  127. Doersen, C. J., Guerrier-Takada, C., Altman, S., and Attardi, G. (1985) Characterization of an RNase P activi-ty from HeLa cell mitochondria. Comparison with the cytosol RNase Pactivity, J. Biol. Chem., 260, 5942–5949.

    PubMed  CAS  Google Scholar 

  128. Yoshionari, S., Koike, T., Yokogawa, T., Nishikawa, K., Ueda, T., Miura, K., and Watanabe, K. (1994) Existence of nuclear-encoded 5S-rRNA in bovine mitochondria, FEBS Lett., 338, 137–142.

    Article  PubMed  CAS  Google Scholar 

  129. Magalhaes, P. J., Andreu, A. L., and Schon, E. A. (1998) Evidence for the presence of 5S rRNA in mammalian mitochondria, Mol. Biol. Cell., 9, 2375–2382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Entelis, N. S., Kolesnikova, O. A., Dogan, S., Martin, R. P., and Tarassov, I. A. (2001) 5S rRNA and tRNA import into human mitochondria. Comparison of in vitro require-ments, J. Biol. Chem., 276, 45642–45653.

    Article  PubMed  CAS  Google Scholar 

  131. Smirnov, A., Tarassov, I., Mager-Heckel, A. M., Letzelter, M., Martin, R. P., Krasheninnikov, I. A., and Entelis, N. (2008) Two distinct structural elements of 5S rRNA are needed for its import into human mitochondria, RNA, 14, 749–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Smirnov, A., Entelis, N., Martin, R. P., and Tarassov, I. (2011) Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18, Genes Dev., 25, 1289–1305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Smirnov, A., Comte, C., Mager-Heckel, A. M., Addis, V., Krasheninnikov, I. A., Martin, R. P., Entelis, N., and Tarassov, I. (2010) Mitochondrial enzyme rhodanese is essential for 5S ribosomal RNA import into human mito-chondria, J. Biol. Chem., 285, 30792–30803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wang, G., Chen, H. W., Oktay, Y., Zhang, J., Allen, E. L., Smith, G. M., Fan, K. C., Hong, J. S., French, S. W., McCaffery, J. M., Lightowlers, R. N., Morse, H. C., 3rd, Koehler, C. M., and Teitell, M. A. (2010) PNPASE regu-lates RNA import into mitochondria, Cell, 142, 456–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sharma, M. R., Koc, E. C., Datta, P. P., Booth, T. M., Spremulli, L. L., and Agrawal, R. K. (2003) Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins, Cell, 115, 97–108.

    Article  PubMed  CAS  Google Scholar 

  136. Chicherin, I. (2016) Adressage de l’ARN ribosomique 5S dans les mitochondries et la traduction mitochondriale, PhD thesis, Strasbourg University, France.

    Google Scholar 

  137. Kolesnikova, O. A., Entelis, N. S., Mireau, H., Fox, T. D., Martin, R. P., and Tarassov, I. A. (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm, Science, 289, 1931–1933.

    Article  PubMed  CAS  Google Scholar 

  138. Baleva, M., Gowher, A., Kamenski, P., Tarassov, I., Entelis, N., and Masquida, B. (2015) A moonlighting human protein is involved in mitochondrial import of tRNA, Int. J. Mol. Sci., 16, 9354–9367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gowher, A., Smirnov, A., Tarassov, I., and Entelis, N. (2013) Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase, PLoS One, 8, e66228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tarassov, I. A., and Entelis, N. S. (1992) Mitochondrially-imported cytoplasmic tRNA(Lys) (CUU) of Saccharomyces cerevisiae: in vivo and in vitro targeting sys-tems, Nucleic Acids Res., 20, 1277–1281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Tarassov, I., Entelis, N., and Martin, R. P. (1995) An intact protein translocating machinery is required for mitochon-drial import of a yeast cytoplasmic tRNA, J. Mol. Biol., 245, 315–323.

    Article  PubMed  CAS  Google Scholar 

  142. Vyssokikh, M. Y., Schirtz, T., Kolesnikova, O., Entelis, N., Antonenko, Y. N., Rokitskaya, T. I., and Tarassov, I. (2012) Isoform porin 2 is involved in tRNA(Lys) transport from cytosol to mitochondria in yeast, BBA Bioenergetics, 1817, 124–125.

    Article  Google Scholar 

  143. Entelis, N., Kieffer, S., Kolesnikova, O., Martin, R., and Tarassov, I. (1998) Structural requirement of tRNALys for its import into yeast mitochondria, Proc. Natl. Acad. Sci. USA, 95, 2838–2843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Kazakova, H. A., Entelis, N. S., Martin, R. P., and Tarassov, I. A. (1999) The amino acceptor stem of the yeast tRNA(Lys) contains determinants of mitochondrial import selectivity, FEBS Lett., 442, 193–197.

    Article  PubMed  CAS  Google Scholar 

  145. Kolesnikova, O., Entelis, N., Kazakova, H., Brandina, I., Martin, R. P., and Tarassov, I. (2002) Targeting of tRNA into yeast and human mitochondria: the role of anticodon nucleotides, Mitochondrion, 2, 95–107.

    Article  PubMed  CAS  Google Scholar 

  146. Tarassov, I., Entelis, N., and Martin, R. P. (1995) Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mito-chondrial lysyl-tRNA synthetases, EMBO J., 14, 3461–3471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Entelis, N., Brandina, I., Kamenski, P., Krasheninnikov, I. A., Martin, R. P., and Tarassov, I. (2006) A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA target-ing toward mitochondria in Saccharomyces cerevisiae, Genes Dev., 20, 1609–1620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Brandina, I., Graham, J., Lemaitre-Guillier, C., Entelis, N., Krasheninnikov, I., Sweetlove, L., Tarassov, I., and Martin, R. P. (2006) Enolase takes part in a macromolec-ular complex associated to mitochondria in yeast, Biochim. Biophys. Acta, 1757, 1217–1228.

    Article  PubMed  CAS  Google Scholar 

  149. Kamenski, P. A. (2007) tRNA import into yeast mitochon-dria: the role of the precursor of mitochondrial lysyl-tRNA-synthetase and the function of imported tRNA in the mito-chondrial matrix, Ph. D. thesis [in Russian].

    Google Scholar 

  150. Yu, H., Mehta, A., Wang, G., Hauswirth, W. W., Chiodo, V., Boye, S. L., and Guy, J. (2013) Next-generation sequencing of mitochondrial targeted AAV transfer of human ND4 in mice, Mol. Vis., 19, 1482–1491.

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., Suomalainen, A., Thorburn, D. R., Zeviani, M., and Turnbull, D. M. (2016) Mitochondrial diseases, Nat. Rev. Dis. Primers, 2, 16080.

    Article  PubMed  Google Scholar 

  152. Schon, E. A., and Gilkerson, R. W. (2010) Functional complementation of mitochondrial DNAs: mobilizing mitochondrial genetics against dysfunction, Biochim. Biophys. Acta, 1800, 245–249.

    Article  PubMed  CAS  Google Scholar 

  153. Popadin, K., and Bazykin, G. (2008) Nucleotide repeats in mitochondrial genome determine human lifespan, Nature Precedings, hdl: 10101/npre.2008.2399.1.

    Google Scholar 

  154. Guo, X., Popadin, K. Y., Markuzon, N., Orlov, Y. L., Kraytsberg, Y., Krishnan, K. J., Zsurka, G., Turnbull, D. M., Kunz, W. S., and Khrapko, K. (2010) Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’, Trends Genet., 26, 340–343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Reddy, P., Ocampo, A., Suzuki, K., Luo, J., Bacman, S. R., Williams, S. L., Sugawara, A., Okamura, D., Tsunekawa, Y., Wu, J., Lam, D., Xiong, X., Montserrat, N., Esteban, C. R., Liu, G. H., Sancho-Martinez, I., Manau, D., Civico, S., Cardellach, F., Del Mar O’Callaghan, M., Campistol, J., Zhao, H., Campistol, J. M., Moraes, C. T., and Izpisua Belmonte, J. C. (2015) Selective elimination of mitochondrial mutations in the germline by genome editing, Cell, 161, 459–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Hashimoto, M., Bacman, S. R., Peralta, S., Falk, M. J., Chomyn, A., Chan, D. C., Williams, S. L., and Moraes, C. T. (2015) MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphoryla-tion function in mitochondrial diseases, Mol. Ther., 23, 1592–1599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Jo, A., Ham, S., Lee, G. H., Lee, Y. I., Kim, S., Lee, Y. S., Shin, J. H., and Lee, Y. (2015) Efficient mitochondrial genome editing by CRISPR/Cas9, Biomed. Res. Int., 2015, 10.

    Article  CAS  Google Scholar 

  158. Orishchenko, K. E., Safronova, J. K., Chupakhin, E. G., Lunev, E. A., and Mazunin, I. O. (2016) Delivery Cas9 into mitochondria, Geny Kletki, 11, 100–105.

    Google Scholar 

  159. Dovydenko, I., Heckel, A. M., Tonin, Y., Gowher, A., Venyaminova, A., Tarassov, I., and Entelis, N. (2015) Mitochondrial targeting of recombinant RNA, Methods Mol. Biol., 1265, 209–225.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Konstantinov.

Additional information

Original Russian Text © N. A. Verechshagina, Yu. M. Konstantinov, P. A. Kamenski, I. O. Mazunin, 2018, published in Biokhimiya, 2018, Vol. 83, No. 6, pp. 816-838.

Electronic supplementary material

10541_2018_620_MOESM1_ESM.pdf

N. A. Verechshagina, Yu. M. Konstantinov, P. A. Kamenski, and I. O. Mazunin, Import of Proteins and Nucleic Acids into Mitochondria (ISSN 0006-2979, Biochemistry (Moscow), 2018, Vol. 83, No. 6, pp. 643-661)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verechshagina, N.A., Konstantinov, Y.M., Kamenski, P.A. et al. Import of Proteins and Nucleic Acids into Mitochondria. Biochemistry Moscow 83, 643–661 (2018). https://doi.org/10.1134/S0006297918060032

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918060032

Keywords

Navigation