Skip to main content
Log in

Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Chromosomal translocations have long been known for their association with malignant transformation, particularly in hematopoietic disorders such as B-cell lymphomas. In addition to the physiological process of maturation, which creates double strand breaks in immunoglobulin gene loci, environmental factors including the Epstein–Barr and human immunodeficiency viruses, malaria-causing parasites (Plasmodium falciparum), and plant components (Euphorbia tirucalli latex) can trigger a reorganization of the nuclear architecture and DNA damage that together will facilitate the occurrence of deleterious chromosomal rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AICDA:

activation-induced cytosine deaminase

BL:

Burkitt lymphoma

CSR:

class switch recombination

DSBs:

DNA double strand breaks

EBV:

Epstein–Barr virus

HIV:

human immunodeficiency virus

NHEJ:

non-homologous end joining

RAG1(2):

recombination activating gene 1(2)

ROS:

reactive oxygen species

SHM:

somatic hypermutation

References

  1. Cremer, M., Von Hase, J., Volm, T., Brero, A., Kreth, G., Walter, J., Ficher, C., Solovei, I., Cremer, C., and Cremer, T. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells, Chromosome Res., 9, 541–567.

    Article  CAS  PubMed  Google Scholar 

  2. Parada, L. A., McQueen, P. G., and Misteli, T. (2004) Tissue-specific spatial organization of genomes, Genome Biol., 5, 44.

    Article  Google Scholar 

  3. Lin, C., Yang, L., and Rosenfeld, M. G. (2012) Molecular logic underlying chromosomal translocations, random or non-random? Adv. Cancer Res., 113, 241–279.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, B., Yusuf, M., Hashimoto, T., Estandarte, A. K., Thompson, G., and Robinson, I. (2017) Three-dimensional positioning and structure of chromosomes in a human prophase nucleus, Sci. Adv., 3, e1602231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Croft, J. A., Bridger, J. M., Boyle, S., Perry, P., Teague, P., and Bickmore, W. A. (1999) Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol., 145, 1119–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cavalli, G., and Misteli, T. (2013) Functional implications of genome topology, Nat. Struct. Mol. Biol., 20, 290–299.

    Article  CAS  PubMed  Google Scholar 

  7. Meaburn, K. J., Misteli, T., and Soutoglou, E. (2007) Spatial genome organization in the formation of chromosomal translocations, Semin. Cancer Biol., 17, 80–90.

    Article  CAS  PubMed  Google Scholar 

  8. Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M. S., and Mhlanga, M. M. (2013) Chromosomal contact permits transcription between coregulated genes, Cell, 155, 606–620.

    Article  CAS  PubMed  Google Scholar 

  9. Therizols, P., Illingworth, R. S., Courilleau, C., Boyle, S., Wood, A. J., and Bickmore, W. A. (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells, Science, 346, 1238–1242.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Sandoval, A., Towbin, B. D., Kalck, V., Cabianca, D. S., Gaidatzis, D., Hauer, M. H., Geng, L., Wang, L., Yang, T., Wang, X., Zhao, K., and Gasser, S. M. (2015) Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans embryos, Cell, 163, 1333–1347.

    Article  CAS  PubMed  Google Scholar 

  11. Bonev, B., and Cavalli, G. (2016) Organization and function of the 3D genome, Nat. Rev. Genet., 17, 661–678.

    Article  CAS  PubMed  Google Scholar 

  12. Jakob, B., Splinter, J., Durante, M., and Taucher-Scholz, G. (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion, Proc. Natl. Acad. Sci. USA, 106, 3172–3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krawczyk, P. M., Borovski, T., Stap, J., Cijsouw, T., ten Cate, R., Medema, J. P., Kanaar, R., Franken, N. A., and Aten, J. A. (2012) Chromatin mobility is increased at sites of DNA double-strand breaks, J. Cell Sci., 125, 2127–2133.

    Article  CAS  PubMed  Google Scholar 

  14. Dion, V., Kalck, V., Horigome, C., Towbin, B. D., and Gasser, S. M. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombi-nation machinery, Nat. Cell Biol., 14, 502–509.

    Article  CAS  PubMed  Google Scholar 

  15. Roukos, V., Voss, T. C., Schmidt, C. K., Lee, S., Wangsa, D., and Misteli, T. (2013) Spatial dynamics of chromosome translocations in living cells, Science, 341, 660–664.

    Article  CAS  PubMed  Google Scholar 

  16. Kruhlak, M. J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Müller, W. G., McNally, J. G., Bazett-Jones, D. P., and Nussenzweig, A. (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks, J. Cell Biol., 172, 823–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aten, J. A., Stap, J., Krawczyk, P. M., van Oven, C. H., Hoebe, R. A., Essers, J., and Kanaar, R. (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains, Science, 303, 92–95.

    Article  CAS  PubMed  Google Scholar 

  18. Germini, D., Tsfasman, T., Klibi, M., El-Amine, R., Pichugin, A., Iarovaia, O. V., Bilhou-Nabera, C., Subra, F., Bou Saada, Y., Sukhanova, A., Boutboul, D., Raphael, M., Wiels, J., Razin, S. V., Bury-Mone, S., Oksenhendler, E., Lipinski, M., and Vassetzky, Y. S. (2017) HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells, Leukemia, 31, 2515–2522.

    Article  CAS  PubMed  Google Scholar 

  19. Roukos, V., and Misteli, T. (2014) The biogenesis of chromosome translocations, Nat. Cell Biol., 16, 293–300.

    Article  CAS  PubMed  Google Scholar 

  20. Roukos, V., Burman, B., and Misteli, T. (2013) The cellular etiology of chromosome translocations, Curr. Opin. Cell Biol., 25, 357–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burman, B., Zhang, Z. Z., Pegoraro, G., Lieb, J. D., and Misteli, T. (2015) Histone modifications predispose genome regions to breakage and translocation, Genes Dev., 29, 1393–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daniel, J. A., and Nussenzweig, A. (2012) Roles for histone H3K4 methyltransferase activities during immunoglobulin class-switch recombination, Biochim. Biophys. Acta, 1819, 733–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimazaki, N., Tsai, A. G., and Lieber, M. R. (2009) H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations, Mol. Cell, 34, 535–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiarle, R., Zhang, Y., Frock, R. L., Lewis, S. M., Molinie, B., Ho, Y. J., Myers, D. R., Choi, V. W., Compagno, M., Malkin, D. J., Neuberg, D., Monti, S., Giallourakis, C. C., Gostissa, M., and Alt, F. W. (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B-cells, Cell, 147, 107–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathas, S., Kreher, S., Meaburn, K. J., Johrens, K., Lamprecht, B., Assaf, C., Sterry, W., Kadin, M. E., Daibata, M., Joos, S., Hummel, M., Stein, H., Janz, M., Anagnostopoulos, I., Schrock, E., and Misteli, T. (2009) Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma, Proc. Natl. Acad. Sci. USA, 106, 5831–5836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klein, I. A., Resch, W., Jankovic, M., Oliveira, T., Yamane, A., Nakahashi, H., Di Virgilio, M., Bothmer, A., Nussenzweig, A., Robbiani, D. F., Casellas, R., and Nussenzweig, M. C. (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B-lymphocytes, Cell, 147, 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mathas, S., and Misteli, T. (2009) The dangers of transcription, Cell, 139, 1047–1049.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, C., Yang, L., Tanasa, B., Hutt, K., Ju, B., Ohgi, K., Zhang, J., Rose, D. W., Fu, X. D., Glass, C. K., and Rosenfeld, M. G. (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer, Cell, 139, 1069–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deaton, A., and Bird, A. (2011) CpG islands and the regulation of transcription, Genes Dev., 25, 1010–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai, A. G., Lu, H., Raghavan, S. C., Muschen, M., Hsieh, C. L., and Lieber, M. R. (2008) Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity, Cell, 135, 1130–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nambiar, M., and Raghavan, S. C. (2011) How does DNA break during chromosomal translocations? Nucleic Acids Res., 39, 5813–5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clapier, C. R., Iwasa, J., Cairns, B. R., and Peterson, C. L. (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes, Nat. Rev. Mol. Cell Biol., 18, 407–422.

    Article  CAS  PubMed  Google Scholar 

  33. Neumann, F. R., Dion, V., Gehlen, L. R., Tsai-Pflugfelder, M., Schmid, R., Taddei, A., and Gasser, S. M. (2012) Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination, Genes Dev., 26, 369–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bornkamm, G. W. (2009) Epstein–Barr virus and the pathogenesis of Burkitt’s lymphoma: more questions than answers, Int. J. Cancer, 124, 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  35. Mawson, A. R., and Majumdar, S. (2017) Malaria, Epstein–Barr virus infection, and the pathogenesis of Burkitt’s lymphoma, Int. J. Cancer, 141, 1849–1855.

    CAS  PubMed  Google Scholar 

  36. Moormann, A. M., and Bailey, J. A. (2016) Malaria–how this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis, Curr. Opin. Virol., 20, 78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brady, G., MacArthur, G. J., and Farrell, P. J. (2007) Epstein–Barr virus and Burkitt lymphoma, J. Clin. Pathol., 60, 1397–1402.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Allday, M. J. (2009) How does Epstein–Barr virus (EBV) complement the activation of myc in the pathogenesis of Burkitt’s lymphoma? Semin. Cancer Biol., 19, 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torgbor, C., Awuah, P., Deitsch, K., Kalantari, P., Duca, K. A., and Thorley-Lawson, D. A. (2014) A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis, PLoS Pathog., 10, e1004170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bernard, O., Cory, S., Gerondakis, S., Webb, E., and Adams, J. M. (1983) Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours, EMBO J., 2, 2375–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sklyar, I., Iarovaia, O. V., Gavrilov, A. A., Pichugin, A., Germini, D., Tsfasman, T., Caron, G., Fest, T., Lipinski, M., Razin, S. V., and Vassetzky, Y. S. (2016) Distinct patterns of colocalization of the CCND1 and CMYC genes with their potential translocation partner IGH at successive stages of B-cell differentiation, J. Cell. Biochem., 117, 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  42. Allinne, J., Pichugin, A., Iarovaia, O., Klibi, M., Barat, A., Zlotek-Zlotkiewicz, E., Saada, Y., Dib, C., Dmitriev, P., Hamade, A., and Carnac, G. (2014) Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma, Blood, 123, 2044–2053.

    Article  CAS  PubMed  Google Scholar 

  43. Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A., and Misteli, T. (2003) Spatial proximity of translocation-prone gene loci in human lymphomas, Nat. Genet., 34, 287–291.

    Article  CAS  PubMed  Google Scholar 

  44. Nikiforova, M. N., Stringer, J. R., Blough, R., Medvedovic, M., Fagin, J. A., and Nikiforov, Y. E. (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cell, Science, 290, 138–141.

    Article  CAS  PubMed  Google Scholar 

  45. Osborne, C. S., Chakalova, L., Mitchell, J. A., Horton, A., Wood, A. L., Bolland, D. J., Corcoran, A. E., and Fraser, P. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by IGH, PLoS Biol., 5, e192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pichugin, A., Iarovaia, O. V., Gavrilov, A., Sklyar, I., Barinova, N., Barinov, A., Ivashkin, E., Caron, G., Aoufouchi, S., Razin, S. V., Fest, T., Lipinski, M., and Vassetzky, Y. S. (2017) The IGH locus relocalizes to a “recombination compartment” in the perinucleolar region of differentiating B-lymphocytes, Oncotarget, 8, 16941.

    Article  Google Scholar 

  47. Ramiro, A. R., Jankovic, M., Eisenreich, T., Difilippantonio, S., Chen-Kiang, S., Muramatsu, M., Honjo, T., Nussenzweig, A., and Nussenzweig, M. C. (2004) AID is required for c-myc/IGH chromosome translocations in vivo, Cell, 118, 431–438.

    Article  CAS  PubMed  Google Scholar 

  48. Robbiani, D. F., Bothmer, A., Callen, E., Reina-San-Martin, B., Dorsett, Y., Difilippantonio, S., Bolland, D. J., Chen, H. T., Corcoran, A. E., Nussenzweig, A., and Nussenzweig, M. C. (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IGH translocations, Cell, 135, 1028–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robbiani, D. F., Deroubaix, S., Feldhahn, N., Oliveira, T. Y., Callen, E., Wang, Q., Jankovic, M., Silva, I. T., Rommel, P. C., Bosque, D., and Eisenreich, T. (2015) Plasmodium infectio promotes genomic instability and AID-dependent B-cell lymphoma, Cell, 162, 727–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rocha, P. P., Micsinai, M., Kim, J. R., Hewitt, S. L., Souza, P. P., Trimarchi, T., Strino, F., Parisi, F., Kluger, Y., and Skok, J. A. (2012) Close proximity to IGH is a contributing factor to AID-mediated translocations, Mol. Cell, 47, 873–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Epstein, M. A. (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma, J. Exp. Med., 121, 761–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amon, W., and Farrell, P. J. (2005) Reactivation of Epstein–Barr virus from latency, Rev. Med. Virol., 15, 149–156.

    Article  PubMed  Google Scholar 

  53. Li, C., Shi, Z., Zhang, L., Huang, Y., Liu, A., Jin, Y., Lukasova, E., Kozubek, S., Kozubek, M., Kjeronska, J., Ryznar, L., Horakova, J., and Krahulcova, E. (2010) Dynamic changes of territories 17 and 18 during EBV-infection of human lymphocytes, Mol. Biol. Rep., 37, 2347–2354.

    Article  CAS  PubMed  Google Scholar 

  54. Kamranvar, S. A., Gruhne, B., Szeles, A., and Masucci, M. G. (2007) Epstein–Barr virus promotes genomic instability in Burkitt’s lymphoma, Oncogene, 26, 5115–5123.

    Article  CAS  PubMed  Google Scholar 

  55. Gruhne, B., Sompallae, R., Marescotti, D., Kamranvar, S., Gastaldello, S., and Masucci, M. (2009) The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species, Proc. Natl. Acad. Sci. USA, 106, 2313–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Young, L. S., and Rickinson, A. B. (2004) Epstein–Barr virus: 40 years on, Nat. Rev. Cancer, 4, 757–768.

    Article  CAS  PubMed  Google Scholar 

  57. Sivachandran, N., Wang, X., and Frappier, L. (2012) Functions of the Epstein–Barr virus EBNA1 protein in viral reactivation and lytic infection, J. Virol., 86, 6146–6158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sompallae, R., Callegari, S., Kamranvar, S. A., and Masucci, M. G. (2010) Transcription profiling of Epstein–Barr virus nuclear antigen (EBNA)-1 expressing cells suggests targeting of chromatin remodeling complexes, PLoS One, 5.

    Google Scholar 

  59. Coppotelli, G., Mughal, N., Callegari, S., Sompallae, R., Caja, L., Luijsterburg, M. S., Dantuma, N. P., Moustakas, A., and Masucci, M. G. (2013) The Epstein–Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins, Nucleic Acids Res., 41, 2950–2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, D. Y., Kalpana, G. V., Goff, S. P., and Schubach, W. H. (1996) Epstein–Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF–SWI complex, J. Virol., 70, 6020–6028.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wood, C. D., Veenstra, H., Khasnis, S., Gunnell, A., Webb, H. M., Shannon-Lowe, C., Andrews, S., Osborne, C. S., and West, M. J. (2016) Myc activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer–promoter hubs, Elife, 5, e18270.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, A., Zhao, B., Kieff, E., Aster, J. C., and Wang, F. (2006) EBNA-3B-and EBNA-3C-regulated cellular genes in Epstein–Barr virus-immortalized lymphoblastoid cell lines, J. Virol., 80, 10139–10150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalchschmidt, J. S., Bashford-Rogers, R., Paschos, K., Gillman, A. C. T., Styles, C. T., Kellam, P., and Alldae, M. J. (2016) Epstein–Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B-cells, J. Exp. Med., 213, 921–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leonard, S., Wei, W., Anderton, J., Vockerodt, M., Rowe, M., Murray, P. G., and Woodman, C. B. (2011) Epigenetic and transcriptional changes which follow Epstein–Barr virus infection of germinal center B-cells and their relevance to the pathogenesis of Hodgkin’s lymphoma, J. Virol., 85, 9568–9577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, Y. N., Dong, D. L., Hayward, G. S., and Hayward, S. D. (1990) The Epstein–Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif, J. Virol., 64, 3358–3369.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kgatle, M. M., Spearman, C. W., Kalla, A. A., and Hairwadzi, H. N. (2017) DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations, Oxid. Med. Cell. Longev., 3179421.

    Google Scholar 

  67. Chen, X., Kamranvar, S. A., and Masucci, M. G. (2016) Oxidative stress enables Epstein–Barr virus-induced B-cell transformation by posttranscriptional regulation of viral and cellular growth-promoting factors, Oncogene, 35, 3807–3816.

    Article  CAS  PubMed  Google Scholar 

  68. Chiu, Y. F., Sugden, A. U., and Sugden, B. (2013) Epstein–Barr viral productive amplification reprograms nuclear architecture, DNA replication, and histone deposition, Cell Host Microbe, 14, 607–618.

    Article  CAS  PubMed  Google Scholar 

  69. Asai, R., Kato, A., Kato, K., Kanamori-Koyama, M., Sugimoto, K., Sairenji, T., Nishiyama, Y., and Kawaguchi, Y. (2006) Epstein–Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1, J. Virol., 80, 5125–5134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, C.-P., Chen, J.-Y., Wang, J.-T., Kimura, K., Takemoto, A., Lu, C.-C., and Chen, M. R. (2007) Epstein–Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II, J. Virol., 81, 5166–5180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Achkar, E., Gerbault-Seureau, M., Muleris, M., Dutrillaux, B., and Debatisse, M. (2005) Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites, Proc. Natl. Acad. Sci. USA, 102, 18069–18074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Moquin, S. A., Thomas, S., Whalen, S., Warburton, A., Fernanadez, S. G., McBride, A. A., Katherine, S., Pollard, J. J., and Miranda, L. (2017) The Epstein–Barr virus episome maneuvers between nuclear chromatin compartments during reactivation, J. Virol., doi: 10.1128/JVI.01413-17.

    Google Scholar 

  73. Hurley, E., Agger, S., McNeil, J., Lawrence, J. B., Calendar, A., Lenoir, G., and Thorley-Lawson, D. A. (1991) When Epstein–Barr virus persistently infects B-cell lines, it frequently integrates, J. Virol., 65, 1245–1254.

    CAS  PubMed  Google Scholar 

  74. Xiao, K., Yu, Z., Li, X., Li, X., Tang, K., Tu, C., Qi, P., Liao, Q., Chen, P., Zeng, Z., Li, G., and Xiong, W. (2016) Genome-wide analysis of Epstein–Barr virus (EBV) integration and strain in C666-1 and Raji cells, J. Cancer, 7, 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nunnari, G., Smith, J. A., and Daniel, R. (2008) HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J. Exp. Clin. Cancer Res., 27, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Musinova, Y. R., Sheval, E. V., Dib, C., Germini, D., and Vassetzky, Y. S. (2016) Functional roles of HIV-1 Tat protein in the nucleus, Cell. Mol. Life Sci., 73, 589–601.

    Article  CAS  PubMed  Google Scholar 

  77. Gibson, T. M., Morton, L. M., Shiels, M. S., Clarke, C. A., and Engels, E. A. (2014) Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study, AIDS, 28, 2313–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mutalima, N., Molyneux, E., Jaffe, H., Kamiza, S., Borgstein, E., Mkandawire, N., Liomba, G., Batumba, M., Lagos, D., Gratrix, F., Boshoff, C., Casabonne, D., Carpenter, L. M., and Newton, R. (2008) Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study, PLoS One, 3, e2505.

    PubMed  Google Scholar 

  79. Dolcetti, R., Gloghini, A., Caruso, A., and Carbone, A. (2016) A lymphomagenic role for HIV beyond immune suppression? Blood, 127, 1403–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Robbiani, D. F., Bunting, S., Feldhahn, N., Bothmer, A., Camps, J., Deroubaix, S., Klein, I. A., Stone, G., Eisenreich, T. R., Ried, T., Nussenzweig, A., and Nussenzweig, M. C. (2009) AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations, Mol. Cell, 36, 631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sneller, M., and Lane, H. (2014) HIV/IL-2 and EBV-associated lymphoproliferative diseases: cause and effect or coincidence? HIV Med., 15, 1–2.

    Article  CAS  PubMed  Google Scholar 

  82. Mbulaiteye, S. M., Biggar, R. J., Goedert, J. J., and Engels, E. A. (2003) Immune deficiency and risk for malignancy among persons with AIDS, J. Acquir. Immune Defic. Syndr., 32, 527–533.

    Article  PubMed  Google Scholar 

  83. Engels, E. A., Pfeiffer, R. M., Landgren, O., and Moore, R. D. (2010) Immunologic and virologic predictors of AIDS-related non-Hodgkin lymphoma in the highly active antiretro-viral therapy era, J. Acquir. Immune Defic. Syndr., 54, 78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. El-Amine, R., Germini, D., Zakharova, V. V., Tsfasman, T., Sheval, E. V., Louzada, R. A. N., Dupuy, C., Bilhou-Nabera, C., Hamade, A., Najjar, F., Oksenhendler, E., Lipinski, M., Chernyak, B. V., and Vassetzky, Y. S. (2017) HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production, Redox Biol., in press.

    Google Scholar 

  85. Rochford, R., and Moormann, A. M. (2015) Burkitt’s lymphoma, Curr. Top. Microbiol. Immunol., 390, 267–285.

    CAS  PubMed  Google Scholar 

  86. Singh, B., Sung, L. K., Matusop, A., Radhakrishnan, A., Shamsul, S. G., Cox-Singh, J., Thomas, A., and Conway, D. J. (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings, Lancet, 363, 1017–1024.

    Article  PubMed  Google Scholar 

  87. Petter, M., and Duffy, M. F. (2015) Pathogen–Host Interactions: Antigenic Variation v. Somatic Adaptations, (Hsu, E., and Du Pasquier, L., eds.) Springer.

    Google Scholar 

  88. Biggs, B., Anders, R. F., Dillon, H. E., Davern, K. M., Martin, M., Petersen, C., Carlson, J., Helmby, H., Hill, A. V. S., Brewster, D., Greenwood, B. M., and Wahlgren, M. (1992) Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum, J. Immunol., 149, 2047–2054.

    CAS  PubMed  Google Scholar 

  89. Chyne, A., Donati, D., Guerreiro-Cacais, A. O., Levitsky, V., Chen, Q., Falk, K., Iorem, J., Kironde, F., Wahlgren, M., and Bejarano, M. T. (2007) A molecular link between malaria and Epstein–Barr virus reactivation, PLoS Pathog., 3, e80.

    Article  CAS  Google Scholar 

  90. Reynaldi, A., Schlub, T. E., Chelimo, K., Sumba, P. O., Piriou, E., Ogolla, S., Moormann, A. M., Rochford, R., and Davenport, M. P. (2016) Impact of plasmodium falciparum coinfection on longitudinal Epstein–Barr virus kinetics in kenyan children, J. Infect. Dis., 213, 985–991.

    Article  PubMed  Google Scholar 

  91. Moormann, A. M., Chelimo, K., Sumba, O. P., Lutzke, M. L., Ploutz-Snyder, R., Newton, D., Kazura, J., and Rochford, R. (2005) Exposure to holoendemic malaria results in elevated Epstein–Barr virus loads in children, J. Infect. Dis., 191, 1233–1238.

    Article  PubMed  Google Scholar 

  92. Moormann, A. M., Chelimo, K., Sumba, P. O., Tisch, D. J., Rochford, R., and Kazura, J. W. (2007) Exposure to holoendemic malaria results in suppression of Epstein–Barr virus-specific T cell immunosurveillance in Kenyan children, J. Infect. Dis., 195, 799–808.

    Article  CAS  PubMed  Google Scholar 

  93. Njie, R., Bell, A. I., Jia, H., Croom-Carter, D., Chaganti, S., Hislop, A. D., Whittle H., and Rickinson, A. B. (2009) The effects of acute malaria on Epstein–Barr virus (EBV) load and EBV-specific T-cell immunity in Gambian children, J. Infect. Dis., 199, 31–38.

    Article  PubMed  Google Scholar 

  94. Chattopadhyay, P. K., Chelimo, K., Embury, P. B., Mulama, D. H., Sumba, P. O., Gostick, E., Ladell, K., Brodie, T. M., Vulule, J., Roederer, M., Moormann, A. M., and Prece, D. A. (2013) Holoendemic malaria exposure is associated with altered Epstein–Barr virus-specific CD8+ T-cell differentiation, J. Virol., 87, 1779–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gupta, N., Vishnoi, G., Wal, A., and Wal, P. (2013) Medicinal value of Euphorbia tirucalli, Syst. Rev. Pharm., 4, 40.

    Article  Google Scholar 

  96. Mannucci, S., Luzzi, A., Carugi, A., Gozzetti, A., Lazzi, S., Malagnino, V., Monique, S., Cusi, M. G., Leoncini, L., Van den Bosch, C. A., and De Falco, G. (2012) EBV reactivation and chromosomal polysomies: Euphorbia tirucalli as a possible cofactor in endemic Burkitt lymphoma, Adv. Hematol., 149780.

    Google Scholar 

  97. Van den Bosch, C., Griffin, B. E., Kazembe, P., Dziweni, C., and Kadzamira, L. (1993) Are plant factors a missing link in the evolution of endemic Burkitt’s lymphoma? Br. J. Cancer, 68, 1232–1235.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Machado, M. M., De Oliveira, L. F. S., Zuravski, L., De Souza, R. O., Fischer, P., Duarte, J. A., Jonathaline, A., Manoelly, O. R., Camila, M. G., Boligon, A. A., and Margareth, A. L. (2016) Evaluation of genotoxic and cytotoxic effects of hydroalcoholic extract of Euphorbia tirucalli (Euphorbiaceae) in cell cultures of human leukocytes, An. Acad. Bras. Cienc., 88, 17–28.

    Article  CAS  PubMed  Google Scholar 

  99. Waczuk, E., Kamdem, J., Ablaji, A., Meinerz, D., Bueno, D., Do Nascimento Gonzaga, T., Scotti do Canto Dorow, S., Boligon, A. A., Athayde, M. L., and Avila, D. S. (2015) Euphorbia tirucalli aqueous extract induces cytotoxicity, genotoxicity and changes in antioxidant gene expression in human leukocytes, Toxicol. Res. (Camb.), 4, 739–748.

    CAS  Google Scholar 

  100. MacNeil, A., Sumba, O. P., Lutzke, M. L., Moormann, A., and Rochford, R. (2003) Activation of the Epstein–Barr virus lytic cycle by the latex of the plant Euphorbia tirucalli, Br. J. Cancer, 88, 1566–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aya, T., Kinoshita, T., Imai, S., Koizumi, S., Mizuno, F., Osato, T., Saton, C., Oikawa, T., Kuzumaki, N., and Ohigashi, H. (1991) Chromosome translocation and c-MYC activation by Epstein–Barr virus and Euphorbia tirucalli in B lymphocytes, Lancet, 337, 1190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Vassetzky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sall, F.B., Germini, D., Kovina, A.P. et al. Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes. Biochemistry Moscow 83, 402–410 (2018). https://doi.org/10.1134/S0006297918040119

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918040119

Keywords

Navigation