Skip to main content
Log in

Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Various forms of participation of proteolytic enzymes in pathogenesis and defense in plants are reviewed. Along with extracellular proteinases, phytopathogenic microorganisms produce specific effectors having proteolytic activity and capable of acting on proteins inside plant cells. In turn, for defense against pathogens, plants use both extracellular and intracellular proteinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Avr proteins:

avirulence pathogen proteins

CBD:

cellulose binding domain of plant chitinase

HR:

hyper-sensitive response in plants

PR proteins:

plant pathogenesis-related proteins

R genes:

resistance genes of the host plant

ROS:

reactive oxygen species

SAR:

systemic acquired resistance response in plants

TTSS:

type three secretion system

References

  1. Van Loon, L. C., Rep, M., and Pieterse, C. M. (2006) Significance of inducible defense-related proteins in infected plants, Annu. Rev. Phytopathol., 44, 135–162.

    Article  PubMed  Google Scholar 

  2. El Hadrami, A., El-Bebany, A. F., Yao, Z., Adam, L. R., El Hadrami, I., and Daayf, F. (2012) Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era, Int. J. Mol. Sci., 13, 7237–7259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, S.-J., Kelley, B. S., Damasceno, C. M. B., Bonnie, St. J., Kim, B.-S., Kim, B.-D., and Rose, J. K. C. (2006) A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta, Mol. Plant–Microbe Interact., 19, 1368–1377.

    Article  CAS  PubMed  Google Scholar 

  4. Cook, D. E., Mesarich, C. H., and Thomma Bart, P. H. J. (2015) Understanding plant immunity as a surveillance system to detect invasion, Annu. Rev. Phytopathol., 53, 541–563.

    Article  CAS  PubMed  Google Scholar 

  5. Van der Hoorn, R. A., and Jones, J. D. (2004) The plant proteolytic machinery and its role in defense, Curr. Opin. Plant Biol., 7, 400–407.

    Article  PubMed  Google Scholar 

  6. Valueva, T. A., and Mosolov, V. V. (2002) The role of inhibitors of proteolytic enzymes in plant defense, Uspekhi Biol. Khim., 42, 193–216.

    CAS  Google Scholar 

  7. Rast, D. M., Baumgartner, D., Mayer, C., and Hollenstein, G. O. (2003) Cell wall-associated enzymes in fungi, Phytochemistry, 64, 339–366.

    Article  CAS  PubMed  Google Scholar 

  8. Huitema, E., Bos, J. I., Tian, M., Win, J., Waugh, M. E., and Kamoun, S. (2004) Linking sequence to phenotype in Phytophthora–plant interactions, Trends Microbiol., 12, 193–200.

    Article  CAS  PubMed  Google Scholar 

  9. Vorwerk, S., Somerville, S., and Somerville, C. (2004) The role of plant cell wall polysaccharide composition in disease resistance, Trends Plant Sci., 9, 203–209.

    Article  CAS  PubMed  Google Scholar 

  10. Abramovitch, R. B., and Martin, G. B. (2004) Strategies used by bacterial pathogens to suppress plant defenses, Curr. Opin. Plant Biol., 7, 356–364.

    Article  CAS  PubMed  Google Scholar 

  11. Rose, J. K. C., Ham, K. S., Darvill, A. G., and Albersheim, P. (2002) Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counter defense mechanism by plant pathogens, Plant Cell, 14, 1329–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alfano, J. R., and Collmer, A. (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense, Annu. Rev. Phytopathol., 42, 385–414.

    Article  CAS  PubMed  Google Scholar 

  13. Guttman, D. S., Vinatzer, B. A., Sarkar, S. F., Ranall, M. V., Kettler, G., and Greenberg, J. T. (2002) A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae, Science, 295, 1722–1726.

    Article  CAS  PubMed  Google Scholar 

  14. Joo, H. S., and Chang, C. S. (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties, Process Biochem., 40, 1263–1270.

    Article  CAS  Google Scholar 

  15. Rep, M. (2005) Small proteins of plant-pathogenic fungi secreted during host colonization, FEMS Microbiol. Lett., 253, 19–27.

    Article  CAS  PubMed  Google Scholar 

  16. Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I. B., Venter, E., Avrova, A. O., Rehmany, A. P., Böhme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M. A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J. L., and Birch, P. R. (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm, Proc. Natl. Acad. Sci. USA, 102, 7766–7771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bryant, M. K., Schardl, C. L., Hesse, U., and Scott, B. (2009) Evolution of a subtilisin-like protease gene family in the grass endophytic fungus Epichloe festucae, BMC Evol. Biol., 9, 168–175.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rehmany, A. P., Gordon, A., Rose, L. E., Allen, R. L., Armstrong, M. R., Whisson, S. C., Kamoun, S., Tyler, B. M., Birch, P. R. J., and Beynon, J. L. (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines, Plant Cell, 17, 1839–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Innes, R. (2003) New effects of type III effectors, Mol. Microbiol., 50, 363–365.

    Article  CAS  PubMed  Google Scholar 

  20. Petnicki-Owieja, T., Schneider, D. J., Tam, V. C., Chancey, S. T., Shan, L., Jamir, Y., Schechter, L. M., Janes, M. D., Buell, C. R., Tang, X., Collmer, A., and Alfano, J. R. (2002) Genome wide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000, Proc. Natl. Acad. Sci. USA, 99, 7652–7657.

    Article  Google Scholar 

  21. Deslandes, L., Olivier, J., Peeters, N., Feng, D. X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. (2003) Physical interaction between RRS1R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus, Proc. Natl. Acad. Sci. USA, 100, 8024–8029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arnold, D. L., Jackson, R. W., Fillingham, A. J., Gross, S. C., Taylor, J. D., Mansfield, J. W., and Vivian, A. (2001) Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi, J. Microbiol., 147, 1171–1182.

    Article  CAS  Google Scholar 

  23. Hotson, A., and Mudgett, M. B. (2004) Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity, Curr. Opin. Plant. Biol., 7, 384–390.

    Article  CAS  PubMed  Google Scholar 

  24. Hotson, A., Chosed, R., Shu, H., Orth, K., and Mudgett, M. B. (2003) Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta, Mol. Microbiol., 50, 377–389.

    Article  CAS  PubMed  Google Scholar 

  25. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W., and Dixon, J. E. (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis, Cell, 109, 575–588.

    Article  CAS  PubMed  Google Scholar 

  26. Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J. E., and Innes, R. W. (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector, Science, 301, 1230–1233.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez-Solanilla, E., Bronstein, P. A., Schneider, A. R., and Collmer, A. (2004) HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions, Mol. Microbiol., 54, 353–365.

    Article  CAS  PubMed  Google Scholar 

  28. Gottfert, M., Rothlisberger, S., Kundig, C., Beck, C., Marty, R., and Hennecke, H. J. (2001) Potential symbiosisspecific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome, Bacteriology, 183, 1405–1412.

    Article  CAS  Google Scholar 

  29. Kaneko, T., Nakamura, Y., Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S., Watanabe, A., Idesawa, K., Iriguchi, M., Kawashima, K., Kohara, M., Matsumoto, M., Shimpo, S., Tsuruoka, H., Wada, T., Yamada, M., and Tabata, S. (2002) Complete genomic sequence of nitrogenfixing symbiotic bacterium Bradyrhizobium japonicum USDA110, DNA Res., 9, 189–197.

    Article  PubMed  Google Scholar 

  30. Axtell, M. J., Chisholm, S., Dahlbeck, D., and Staskawicz, B. J. (2003) Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease, Mol. Microbiol., 49, 1537–1546.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, M., Shao, F., Innes, R. W., Dixon, J. E., and Xu, Z. (2004) The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substratebinding site, Proc. Natl. Acad. Sci. USA, 101, 302–307.

    Article  CAS  PubMed  Google Scholar 

  32. Mudgett, M. B. (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants, Annu. Rev. Plant Biol., 56, 509–531.

    Article  CAS  PubMed  Google Scholar 

  33. Xia, Y. (2004) Proteases in pathogenesis and plant defense, Cell Microbiol., 6, 905–913.

    Article  CAS  PubMed  Google Scholar 

  34. Mudgett, M. B., and Staskawicz, B. J. (1999) Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: demonstration of secretion and processing during bacterial pathogenesis, Mol. Microbiol., 32, 927–941.

    Article  CAS  PubMed  Google Scholar 

  35. Jin, P., Wood, M. D., Wu, Y., Xie, Z., and Katagiri, F. (2003) Cleavage of the Pseudomonas syringae type III effector AvrRpt2 requires a host factor(s) common among eukaryotes and is important for AvrRpt2 localization in the host cell, Plant Physiol., 133, 1072–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R., and Dangl, J. L. (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance, Cell, 112, 379–389.

    Article  CAS  PubMed  Google Scholar 

  37. Coake, G., Falick, A., and Staskawicz, B. J. (2005) Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin, Science, 308, 548–550.

    Article  Google Scholar 

  38. Orth, K., Xu, Z., Mudgett, M. B., Bao, Z. Q., Palmer, L. E., Bliska, J. B., Mangel, W. F., Staskawicz, B., and Dixon, J. E. (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease, Science, 290, 1594–1597.

    Article  CAS  PubMed  Google Scholar 

  39. Roden, J., Eardley, L., Hotson, A., Cao, Y., and Mudgett, M. B. (2004) Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells, Mol. Plant–Microbe Interact., 17, 633–643.

    Article  CAS  PubMed  Google Scholar 

  40. Noel, L., Thieme, F., Nennstiel, D., and Bonas, U. (2002) Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island, J. Bacteriol., 184, 1340–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D. Y., and Vierstra, R. D. (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress, J. Biol. Chem., 278, 6862–6872.

    Article  CAS  PubMed  Google Scholar 

  42. Deslandes, L., Olivier, J., Theulieres, F., Hirsh, J., Feng, D. X., Bittner-Eddy, P., Beynon, J., and Marco, Y. (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes, Proc. Natl. Acad. Sci. USA, 99, 2404–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orbach, M. J., Farrall, L., Sveigard, J. A., Chumley, F. G., and Valent, B. (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta, Plant Cell, 12, 2019–2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P., and Valent, B. (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance, EMBO J., 19, 4004–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Axtell, M. J., and Staskawicz, B. J. (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4, Cell, 112, 369–377.

    Article  CAS  PubMed  Google Scholar 

  46. El Hadrami, A., El Hadrami, I., and Daayf, F. (2009) Suppression of induced plant defense responses by fungal and oomycete pathogens, in: Molecular Plant–Microbe Interactions (Bouarab, K., Brisson, N., and Daayf, F., eds.) CABI, pp. 231–268.

  47. Knogge, W., and Scheel, D. (2006) LysM receptors recognize friend and foe, Proc. Natl. Acad. Sci. USA, 103, 10829–10830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stergiopoulos, I., and De Wit, P. J. G. M. (2009) Fungal effector proteins, Annu. Rev. Phytopathol., 47, 233–263.

    Article  CAS  PubMed  Google Scholar 

  49. Stergiopoulos, I., van den Burg, H. A., Ökmen, B., Beenen, H. G., Van Liere, S., Kema, G. H. J., and De Wit, P. J. (2010) Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots, Proc. Natl. Acad. Sci. USA, 107, 7610–7615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Win, J., Morgan, W., Bos, J., Krasileva, K. V., Cano, L. M., Chaparro-Garcia, A., Ammar, R., Staskawicz, B. J., and Kamoun, S. (2007) Adaptive evolution has targeted the Cterminal domain of the RXLR effectors of plant pathogenic oomycetes, Plant Cell, 19, 2349–2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thatcher, L. F., Manners, J. M., and Kazan, K. (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis, Plant J., 58, 927–939.

    Article  CAS  PubMed  Google Scholar 

  52. El Oirdi, M., and Bouarab, K. (2007) Plant signaling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea, New Phytol., 175, 131–139.

    Article  CAS  PubMed  Google Scholar 

  53. El Oirdi, M., Abd El Rahman, T., Rigano, L., El Hadrami, A., Rodriguez, M., Daayf, F., Vojnov, A., and Bouarab, K. (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato, Plant Cell, 23, 2405–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van den Burg, H. A., Harrison, S. J., Joosten, M. H., Vervoort, J., and De Wit, P. J. (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection, Mol. Plant–Microbe Interact., 19, 1420–1430.

    Article  PubMed  Google Scholar 

  55. De Wit, P. J., van der Burg, A., Ökmen, B., Stergiopoulos, I., Abd-Elsalam, K. A., Aerts, A. L., Bahkali, A. H., Beenen, H. G., Chettri, P., Cox, M. P., Datema, E., De Vries, R. P., Dhillon, B., Ganley, A. R., Griffiths, S. A., Guo, Y., Hamelin, R. C., Henrissat, B., Kabir, M. S., Jashni, M. K., Kema, G., Klaubauf, S., Lapidus, A., Levasseur, A., Lindquist, E., Mehrabi, R., Ohm, R. A., Owen, T. J., Salamov, A., Schwelm, A., Schijlen, E., Sun, H., van den Burg, H. A., Van Ham, R. C., Zhang, S., Goodwin, S. B., Grigoriev, I. V., Collemare, J., and Bradshaw, R. E. (2012) The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry, PLoS Genet., 8, e1003088.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mesarich, C. H., Stergiopoulos, I., Beenen, H. G., Cordovez, V., Guo, Y., Karimi Jashni, M., Bradshaw, R. E., and De Wit, P. J. (2016) A conserved proline residue in Dothideomycete Avr4 effector proteins is required to trigger a Cf-4-dependent hypersensitive response, Mol. Plant Pathol., 17, 84–95.

    Article  CAS  PubMed  Google Scholar 

  57. Lange, J., Mohr U., Wiemken, A., Boller, T., and VögeliLange, R. (1996) Proteolytic processing of class IV chitinase in the compatible interaction of bean roots with Fusarium solani, Plant Physiol., 111, 1135–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olivieri, F., Zanetti, E. M., Oliva, C. R., Covarrubias, A. A., and Casalongué, C. A. (2002) Characterization of an extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins, Eur. J. Plant Pathol., 108, 63–72.

    Article  CAS  Google Scholar 

  59. Naumann, T. A. (2011) Modification of recombinant maize Chit A chitinase by fungal chitinase-modifying proteins, Mol. Plant Pathol., 12, 365–372.

    Article  CAS  PubMed  Google Scholar 

  60. Naumann, T. A., Wicklow, D. T., and Price, N. P. J. (2014) Polyglycine hydrolases secreted by Pleosporineae fungi that target the linker region of plant class IV chitinases, Biochem. J., 460, 187–198.

    Article  CAS  PubMed  Google Scholar 

  61. Naumann, T. A., Naldrett, M. J., Ward, T. J., and Price, N. P. J. (2015) Polyglycine hydrolases: fungal β-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases, Protein Sci., 24, 1147–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jashni, M. K., Mehrabi, R., Collemare, J., Mesarich, C. H., and De Wit, P. J. G. M. (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions, Front. Plant Sci., 6, 584.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hörger, A. C., and van der Hoorn, R. A. L. (2013) The structural basis of specific protease–inhibitor interactions at the plant–pathogen interface, Curr. Opin. Struct. Biol., 23, 842–850.

    Article  PubMed  Google Scholar 

  64. Ohm, R. A., Feau, N., Henrissat, B., Schoch, C. L., Horwitz, B. A., Barry, K. W. Condon, B. J., Copeland, A. C., Dhillon, B., Glaser, F., Hesse, C. N., Kosti, I., LaButti, K., Lindquist, E. A., Lucas, S., Salamov, A. A., Bradshaw, R. E., Ciuffetti, L., Hamelin, R. C., Kema, G. H., Lawrence, C., Scott, J. A., Spatafora, J. W., Turgeon, B. G., De Wit, P. J., Zhong, S., Goodwin, S. B., and Grigoriev, I. V. (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi, PLoS Pathog., 8, e1003037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valueva, T. A., Kudryavtseva, N. N., Sof’in, A. V., Zaitchik, B. T., Pobedinskaya, M. A., Kokaeva, L. Y., and Elansky, S. N. (2015) Serine exoproteinases secreted by the pathogenic fungi of Alternaria genus, J. Plant Pathol. Microb., 6, 272–279.

    Article  Google Scholar 

  66. Van der Burgt, A., Karimi, J. M., Bahkali, A. H., and De Wit, P. J. (2014) Pseudogenization in pathogenic fungi with different host plants and lifestyles might reflect their evolutionary past, Mol. Plant Pathol., 15, 133–144.

    Article  PubMed  Google Scholar 

  67. Dong, S., Stam, R., Cano, L. M., Song, J., Sklenar, J., Yoshida, K., Bozkurt, T. O., Oliva, R., Liu, Z., Tian, M., Win, J., Banfield, M. J., Jones, A. M., van der Hoorn, R. A., and Kamoun, S. (2014) Effector specialization in a lineage of the Irish potato famine pathogen, Science, 343, 552–555.

    Article  CAS  PubMed  Google Scholar 

  68. Plummer, K. M., Clark, S. J., Ellis, L. M., Loganathan, A., Al-Samarrai, T. H., Rikkerink, E. H. A., Sullivan, P. A., Templeton, M. D., and Farley, P. C. (2004) Analysis of a secreted aspartic peptidase disruption mutant of Glomerella cingulata, Eur. J. Plant Pathol., 110, 265–274.

    Article  CAS  Google Scholar 

  69. Alkan, N., Friedlander, G., Ment, D., Prusky, D., and Fluhr, R. (2015) Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies, New Phytol., 205, 801–815.

    Article  CAS  PubMed  Google Scholar 

  70. Lee, S.-J., and Rose, J. K. C. (2010) Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins, Plant Signal. Behav., 5, 769–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alkan, N., Espeso, E. A., and Prusky, D. (2013) Virulence regulation of phytopathogenic fungi by pH, Antioxid. Redox Signal., 19, 1012–1025.

    Article  CAS  PubMed  Google Scholar 

  72. Alkan, N., Meng, X., Friedlander, G., Reuveni, E., Sukno, S., Sherman, A., Thon, M., Fluhr, R., and Prusky, D. (2013) Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis, Mol. Plant–Microbe Interact., 26, 1345–1358.

    Article  CAS  PubMed  Google Scholar 

  73. Miyara, I., Shafran, H., Haimovich, H. K., Rollins, J., Sherman, A., and Prusky, D. (2008) Multifactor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruits, Mol. Plant Pathol., 9, 281–291.

    Article  CAS  PubMed  Google Scholar 

  74. Miyara, I., Shafran, H., Davidzon, M., Sherman, A., and Prusky, D. (2010) pH regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity, Mol. Plant–Microbe Interact., 23, 304–316.

    Article  CAS  PubMed  Google Scholar 

  75. Maccheroni, W., Jr., Araújo, W. L., and Azevedo, J. L. (2004) Ambient pH-regulated enzyme secretion in endophytic and pathogenic isolates of the fungal genus Colletotrichum, Scientia Agricola, 61, 298–302.

    Article  CAS  Google Scholar 

  76. Kudryavtseva, N. N., Gvozdeva, E. L., Sof’in, A. V., and Valueva, T. A. (2010) The influence of cultural medium composition on the proteolytic enzyme secretion of fungus Rhizoctonia solani, Appl. Biochem. Microbiol., 46, 324–330.

    Article  CAS  Google Scholar 

  77. Mosolov, V. V., and Valueva, T. A. (2006) Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms, Biochemistry (Moscow), 71, 838–845.

    Article  CAS  Google Scholar 

  78. Kramer-Haimovich, H., Servi, E., Katan, T., Rollins, J., Okon, Y., and Prusky, D. (2006) Effect of ammonia production by Colletotrichum gloeosporioides on pelB activation, pectate lyase secretion, and fruit pathogenicity, Appl. Environ. Microbiol., 72, 1034–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miyara, I., Shnaiderman, C., Meng, X., Vargas, W. A., Diaz-Minguez, J. M., Sherman, A., Thon, M., and Prusky, D. (2012) Role of nitrogen-metabolism genes expressed during pathogenicity of the alkalinizing Colletotrichum gloeosporioides and their differential expression in acidifying pathogens, Mol. Plant–Microbe Interact., 25, 1251–1263.

    Article  CAS  PubMed  Google Scholar 

  80. Alkan, N., Fluhr, R., Sherman, A., and Prusky, D. (2008) Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit, Mol. Plant–Microbe Interact., 21, 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  81. Alkan, N., Davydov, O., Sagi, M., Fluhr, R., and Prusky, D. (2009) Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits, Mol. Plant–Microbe Interact., 22, 1484–1491.

    Article  CAS  PubMed  Google Scholar 

  82. Shnaiderman, C., Miyara, I., Kobiler, I., Sherman, A., and Prusky, D. (2013) Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity, Mol. Plant–Microbe Interact., 26, 345–355.

    Article  CAS  PubMed  Google Scholar 

  83. Inguagiato, J. C., Murphy, J. A., and Clarke, B. B. (2008) Anthracnose severity on annual bluegrass influenced by nitrogen fertilization, growth regulators, and verticutting, Crop Sci., 48, 1595–1607.

    Article  CAS  Google Scholar 

  84. Donofrio, N. M., Oh, Y., Lundy, R., Pan, H., Brown, D. E., Jeong, J. S., Coughlan, S., Mitchell, T. K., and Dean, R. A. (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea, Fungal Genet. Biol., 43, 605–617.

    Article  CAS  PubMed  Google Scholar 

  85. Perez-Garcia, A., Snoeijers, S. S., Joosten, M. H. A. J., Goosen, T., and De Wit, P. J. G. M. (2001) Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1, Mol. Plant–Microbe Interact., 14, 316–325.

    Article  CAS  PubMed  Google Scholar 

  86. Stephenson, S.-A., Hatfield, J., Rusu, A. G., Maclean, D. J., and Manners, J. M. (2000) CgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis, Mol. Plant–Microbe Interact., 13, 929–941.

    Article  CAS  PubMed  Google Scholar 

  87. Talbot, N. J., Ebbole, D. J., and Hamer, J. E. (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea, Plant Cell, 5, 1575–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Talbot, N. J., and Foster, A. J. (2001) Genetics and genomics of the rice blast fungus Magnaporthe grisea: developing an experimental model for understanding fungal diseases of cereals, Adv. Bot. Res., 34, 263–287.

    Article  CAS  Google Scholar 

  89. Pellier, A.-L., Lauge, R., Veneault-Fourrey, C., and Langin, T. (2003) CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle, Mol. Microbiol., 48, 639–655.

    Article  CAS  PubMed  Google Scholar 

  90. Dunaevskii, Ya. E., Matveeva, A. R., Fatkhullina, G. N., Belyakova, G. A., and Belozerskii, M. A. (2008) Extracellular proteases of mycelial fungi as participants of pathogenic process, Russ. J. Bioorg. Chem., 34, 286–289.

    Article  CAS  Google Scholar 

  91. Valueva, T. A., Kudryavtseva, N.N., Gvozdeva, E. L., Sof’in, A. V., Iѕina, N. A., Pobedinskaya, M. A., and Elansky, S. N. (2013) Serine proteinases secreted by two isolates of the fungus Alternaria solani, J. Basic. App. Sci., 9, 105–115.

    Google Scholar 

  92. Valueva, T. A., Kudryavtseva, N. N., Sof’in, A. V., Revina, T. A., Gvozdeva, E. L., and Ievleva, E. V. (2011) Comparative analyses of exoproteinases produced by three phytopathogenic microorganisms, J. Pathog., 2011, 947218.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bryan, G. T., Wu, K.-S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R., and Valent, B. (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta, Plant Cell, 12, 2033–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yike, I. (2011) Fungal proteases and their pathophysiological effects, Mycopathology, 171, 299–323.

    Article  CAS  Google Scholar 

  95. Kokaeva, L. Yu., Kudryavtseva, N. N., Pobedinskaya, M. A., Zaichik, B. T., and Elanskii, S. N. (2015) Virulence of Alternaria alternata strains to different potato and tomato cultivars, Zashchita Kartofelya, 1, 14–18.

    Google Scholar 

  96. Kudryavtseva, N. N., Sof’in, A. V., Revina, T. A., Gvozdeva, E. L., Ievleva, E. V., and Valueva, T. A. (2013) Secretion of proteolytic enzymes by three phytopathogenic microorganisms, Appl. Biochem. Microbiol., 49, 514–520.

    Article  CAS  Google Scholar 

  97. Chand, R., Kumar, M., Kushwaha, C., Shah, K., and Joshi, A. K. (2014) Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley, Curr. Microbiol., 69, 202–211.

    Article  CAS  PubMed  Google Scholar 

  98. Chandrasekaran, M., Thangavelu, B., Chun, S. Ch., and Sathiyabama, M. J. (2016) Proteases from phytopathogenic fungi and their importance in phytopathogenicity, J. Gen. Plant Pathol., 82, 233–239.

    Article  CAS  Google Scholar 

  99. Oh, Y., Donofrio, N., Pan, H., Coughlan, S., Brown, D., Meng, S., Mitchell, T., and Dean, R. A. (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae, Genome Biol., 9, R85.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dubovenko, A. G., Dunaevsky, Y. E., Belozersky, M. A., Oppert, B., Lord, J. C., and Elpidina, E. N. (2010) Trypsin-like proteins of the fungi as possible markers of pathogenicity, Fungal Biol., 114, 151–159.

    Article  CAS  PubMed  Google Scholar 

  101. Dunaevskii, Ya. E., Gruban, T. N., Belyakova, G. A., and Belozerskii, M. A. (2006) Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis, Microbiology, 75, 649–652.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Valueva.

Additional information

Original Russian Text © T. A. Valueva, B. Ts. Zaichik, N. N. Kudryavtseva, 2016, published in Uspekhi Biologicheskoi Khimii, 2016, Vol. 56, pp. 283–304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valueva, T.A., Zaichik, B.T. & Kudryavtseva, N.N. Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants. Biochemistry Moscow 81, 1709–1718 (2016). https://doi.org/10.1134/S0006297916130083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916130083

Keywords

Navigation