Skip to main content
Log in

Sustained early disruption of mitochondrial function contributes to arsenic-induced prostate tumorigenesis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Arsenic is a well-known human carcinogen that affects millions of people worldwide, but the underlying mechanisms of carcinogenesis are unclear. Several epidemiological studies have suggested increased prostate cancer incidence and mortality due to exposure to arsenic. Due to lack of an animal model of arsenic-induced carcinogenesis, we used a prostate epithelial cell culture model to identify a role for mitochondria in arsenic-induced prostate cancer. Mitochondrial morphology and membrane potential was impacted within a few hours of arsenic exposure of non-neoplastic prostate epithelial cells. Chronic arsenic treatment induced mutations in mitochondrial genes and altered mitochondrial functions. Human non-neoplastic prostate epithelial cells continuously cultured for seven months in the presence of 5 µM arsenite showed tumorigenic properties in vitro and induced tumors in SCID mice, which indicated transformation of these cells. Protein and mRNA expression of subunits of mtOXPHOS complex I were decreased in arsenic-transformed cells. Alterations in complex I, a main site for reactive oxygen species (ROS) production as well as increased expression of ROS-producing NOX4 in arsenic-transformed cells suggested a role of oxidative stress in tumorigenic transformation of prostate epithelial cells. Whole genome cGH array analyses of arsenic-transformed prostate cells identified extensive genomic instability. Our study revealed mitochondrial dysfunction induced oxidative stress and decreased expression of p53 in arsenic-transformed cells as an underlying mechanism of the mitochondrial and nuclear genomic instability. These studies suggest that early changes in mitochondrial functions are sustained during prolong arsenic exposure. Overall, our study provides evidence that arsenic disruption of mitochondrial function is an early and key step in tumorigenic transformation of prostate epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAC:

bacterial artificial chromosomes

cGH:

comparative genome hybridization (array analysis)

mtOXPHOS:

mitochondrial oxidative phosphorylation

ROS:

reactive oxygen species

References

  1. Banerjee, M., Sarkar, J., Das, J. K., Mukherjee, A., Sarkar, A. K., Mondal, L., and Giri, A. K. (2007) Polymorphism in the ERCC2 codon 751 is associated with arsenic-induced premalignant hyperkeratosis and significant chromosome aberrations, Carcinogenesis, 28, 672–676.

    Article  CAS  PubMed  Google Scholar 

  2. De Chaudhuri, S., Mahata, J., Das, J. K., Mukherjee, A., Ghosh, P., Sau, T. J., Mondal, L., Basu, S., Giri, A. K., and Roychoudhury, S. (2006) Association of specific p53 polymorphisms with keratosis in individuals exposed to arsenic through drinking water in West Bengal, India, Mutat. Res., 601, 102–112.

    Article  Google Scholar 

  3. Frazer, L. (2005) Metal attraction: an ironclad solution to arsenic contamination? Environ. Health Perspect., 113, A398–401.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pearce, F. (2003) Arsenic’s fatal legacy grows worldwide, New Scientist, 179, 1–3.

    Google Scholar 

  5. Ravenscroft, P., Brammer, H., and Richards, K. (2009) Arsenic Pollution: A Global Synthesis, Wiley-Blackwell, Oxford.

    Book  Google Scholar 

  6. Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K. Chowdhury, P. P., Chanda, C. R., Lodh, D., Karan, N. K., Dhar, R. K., Tamili, D., Das, D., Saha, K. C., and Chakraborti, C. (1996) Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world, Curr. Sci., 70, 976–986.

    CAS  Google Scholar 

  7. Davey, J. C., Bodwell, J. E., Gosse, J. A., and Hamilton, J. W. (2007) Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture, Toxicol. Sci., 98, 75–86.

    Article  CAS  PubMed  Google Scholar 

  8. US Environmental Protection Agency (2010) Arsenic in drinking water (http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm).

    Google Scholar 

  9. Camacho, L. M., Gutierrez, M., Alarcon-Herrera, M. T., Villalba Mde, L., and Deng, S. (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA, Chemosphere, 83, 211–225.

    Article  CAS  PubMed  Google Scholar 

  10. Bulka, C. M., Jones, R. M., Turyk, M. E., Stayner, L. T., and Argos, M. (2016) Arsenic in drinking water and prostate cancer in Illinois counties: An ecologic study, Environ. Res., 148, 450–456.

    Article  CAS  PubMed  Google Scholar 

  11. Gundert-Remy, U., Damm, G., Foth, H., Freyberger, A., Gebel, T., Golka, K., Rohl, C., Schupp, T., Wollin, K. M., and Hengstler, J. G. (2015) High exposure to inorganic arsenic by food: the need for risk reduction, Arch. Toxicol., 89, 2219–2227.

    Article  CAS  PubMed  Google Scholar 

  12. Mathews, V. V., Paul, M. V., Abhilash, M., Manju, A., Abhilash, S., and Nair, R. H. (2013) Myocardial toxicity of acute promyelocytic leukemia drug-arsenic trioxide, Eur. Rev. Med. Pharmacol. Sci., 17 (Suppl. 1), 34–38.

    PubMed  Google Scholar 

  13. Shibata, T., Meng, C., Umoren, J., and West, H. (2016) Risk assessment of arsenic in rice cereal and other dietary sources for infants and toddlers in the U.S., Int. J. Environ. Res. Public Health, 13, pii: E361.

    Article  PubMed  Google Scholar 

  14. Wilson, D. (2015) Arsenic content in American wine, J. Environ. Health, 78, 16–22.

    PubMed  Google Scholar 

  15. Wilson, D. (2015) Arsenic consumption in the United States, J. Environ. Health, 78, 8–14, quiz44.

    PubMed  Google Scholar 

  16. Wilson, D., Hooper, C., and Shi, X. (2012) Arsenic and lead in juice: apple, citrus, and apple-base, J. Environ. Health, 75, 14–20, quiz44.

    CAS  PubMed  Google Scholar 

  17. World Health Organization (2010) Exposure to arsenic: a major public health concern (http://www.who.int/ipcs/features/arsenic.pdf).

    Google Scholar 

  18. Tchounwou, P. B., Patlolla, A. K., and Centeno, J. A. (2003) Carcinogenic and systemic health effects associated with arsenic exposure–a critical review, Toxicol. Pathol., 31, 575–588.

    CAS  PubMed  Google Scholar 

  19. Chappell, W. R., Beck, B. D., Brown, K. G., Chaney, R., Cothern, R., Cothern, C. R., Irgolic, K. J., North, D. W., Thornton, I., and Tsongas, T. A. (1997) Inorganic arsenic: a need and an opportunity to improve risk assessment, Environ. Health Perspect., 105, 1060–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dantzig, P. I. (2009) Breast cancer, dermatofibromas and arsenic, Indian J. Dermatol., 54, 23–25.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karagas, M. R., Gossai, A., Pierce, B., and Ahsan, H. (2015) Drinking water arsenic contamination, skin lesions, and malignancies: a systematic review of the global evidence, Curr. Environ. Health Rep., 2, 52–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saint-Jacques, N., Parker, L., Brown, P., and Dummer, T. J. (2014) Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence, Environ. Health, 13, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steinmaus, C., Ferreccio, C., Yuan, Y., Acevedo, J., Gonzalez, F., Perez, L., Cortes, S., Balmes, J. R., Liaw, J., and Smith, A. H. (2014) Elevated lung cancer in younger adults and low concentrations of arsenic in water, Am. J. Epidemiol., 180, 1082–1087.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, W., Cheng, S., and Zhang, D. (2014) Association of inorganic arsenic exposure with liver cancer mortality: a meta-analysis, Environ. Res., 135, 120–125.

    Article  CAS  PubMed  Google Scholar 

  25. Benbrahim-Tallaa, L., and Waalkes, M. P. (2008) Inorganic arsenic and human prostate cancer, Environ. Health Perspect., 116, 158–164.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C. J., Kuo, T. L., and Wu, M. M. (1988) Arsenic and cancers, Lancet, 1, 414–415.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, C. J., and Wang, C. J. (1990) Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms, Cancer Res., 50, 5470–5474.

    CAS  PubMed  Google Scholar 

  28. Lewis, D. R., Southwick, J. W., Ouellet-Hellstrom, R., Rench, J., and Calderon, R. L. (1999) Drinking water arsenic in Utah: a cohort mortality study, Environ. Health Perspect., 107, 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, M. M., Kuo, T. L., Hwang, Y. H., and Chen, C. J. (1989) Dose–response relation between arsenic concentration in well water and mortality from cancers and vascular diseases, Am. J. Epidemiol., 130, 1123–1132.

    CAS  PubMed  Google Scholar 

  30. Garcia-Esquinas, E., Pollan, M., Umans, J. G., Francesconi, K. A., Goessler, W., Guallar, E., Howard, B., Farley, J., Best, L. G., and Navas-Acien, A. (2013) Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study, Cancer Epidemiol. Biomarkers Prev., 22, 1944–1953.

    Article  CAS  PubMed  Google Scholar 

  31. Shi, H., Shi, X., and Liu, K. J. (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis, Mol. Cell. Biochem., 255, 67–78.

    Article  CAS  PubMed  Google Scholar 

  32. Smith, A. H., Goycolea, M., Haque, R., and Biggs, M. L. (1998) Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water, Am. J. Epidemiol., 147, 660–669.

    Article  CAS  PubMed  Google Scholar 

  33. Waalkes, M. P., Ward, J. M., Liu, J., and Diwan, B. A. (2003) Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice, Toxicol. Appl. Pharmacol., 186, 7–17.

    Article  CAS  PubMed  Google Scholar 

  34. Wen, G., Calaf, G. M., Partridge, M. A., Echiburu-Chau, C., Zhao, Y., Huang, S., Chai, Y., Li, B., Hu, B., and Hei, T. K. (2008) Neoplastic transformation of human small airway epithelial cells induced by arsenic, Mol. Med., 14, 2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Achanzar, W. E., Brambila, E. M., Diwan, B. A., Webber, M. M., and Waalkes, M. P. (2002) Inorganic arseniteinduced malignant transformation of human prostate epithelial cells, J. Natl. Cancer Inst., 94, 1888–1891.

    Article  CAS  PubMed  Google Scholar 

  36. Benbrahim-Tallaa, L., Webber, M. M., and Waalkes, M. P. (2005) Acquisition of androgen independence by human prostate epithelial cells during arsenic-induced malignant transformation, Environ. Health Perspect., 113, 1134–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Indiveri, C., Capobianco, L., Kramer, R., and Palmieri, F. (1989) Kinetics of the reconstituted dicarboxylate carrier from rat liver mitochondria, Biochim. Biophys. Acta, 977, 187–193.

    Article  CAS  PubMed  Google Scholar 

  38. Wohlrab, H. (1986) Molecular aspects of inorganic phosphate transport in mitochondria, Biochim. Biophys. Acta, 853, 115–134.

    Article  CAS  PubMed  Google Scholar 

  39. Vahter, M., and Marafante, E. (1989) Intracellular distribution and chemical forms of arsenic in rabbits exposed to arsenate, Biol. Trace Elem. Res., 21, 233–239.

    Article  CAS  PubMed  Google Scholar 

  40. Chilakapati, J., Wallace, K., Ren, H., Fricke, M., Bailey, K., Ward, W., Creed, J., and Kitchin, K. (2010) Genomewide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid, Toxicology, 268, 31–39.

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh, P., Basu, A., Singh, K. K., and Giri, A. K. (2008) Evaluation of cell types for assessment of cytogenetic damage in arsenic exposed population, Mol. Cancer, 7, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hei, T. K., Liu, S. X., and Waldren, C. (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species, Proc. Natl. Acad. Sci. USA, 95, 8103–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, S. X., Davidson, M. M., Tang, X., Walker, W. F., Athar, M., Ivanov, V., and Hei, T. K. (2005) Mitochondrial damage mediates genotoxicity of arsenic in mammalian cells, Cancer Res., 65, 3236–3242.

    CAS  PubMed  Google Scholar 

  44. Pi, J., He, Y., Bortner, C., Huang, J., Liu, J., Zhou, T., Qu, W., North, S. L., Kasprzak, K. S., Diwan, B. A., Chignell, C. F., and Waalkes, M. P. (2005) Low level, long-term inorganic arsenite exposure causes generalized resistance to apoptosis in cultured human keratinocytes: potential role in skin co-carcinogenesis, Int. J. Cancer, 116, 20–26.

    Article  CAS  PubMed  Google Scholar 

  45. Singh, K. K., and Vujcic, M. (2007) Genetic mechanisms of arsenic induced carcinogenesis, in Natural Arsenic in Ground Waters-Health Impact, Remediation and Management (Bundschuh, J., Bhattacharya, P., Armienta, M. A., Matschullat, J., and Garcia, M. E., eds.) Taylor and Francis Group, N.Y., pp. 427–435.

    Google Scholar 

  46. Tokar, E. J., Diwan, B. A., and Waalkes, M. P. (2010) Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype, Environ. Health Perspect., 118, 108–115.

    CAS  PubMed  Google Scholar 

  47. Vujcic, M., Shroff, M., and Singh, K. K. (2007) Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae, Cancer Res., 67, 9740–9749.

    Article  CAS  PubMed  Google Scholar 

  48. Singh, B., Li, X., Owens, K. M., Vanniarajan, A., Liang, P., and Singh, K. K. (2015) Human REV3 DNA polymerase zeta localizes to mitochondria and protects the mitochondrial genome, PLoS One, 10, e0140409.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ayyasamy, V., Owens, K. M., Desouki, M. M., Liang, P., Bakin, A., Thangaraj, K., Buchsbaum, D. J., LoBuglio, A. F., and Singh, K. K. (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin, PLoS One, 6, e24792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh, B., Owens, K. M., Bajpai, P., Desouki, M. M., Srinivasasainagendra, V., Tiwari, H. K., and Singh, K. K. (2015) Mitochondrial DNA polymerase POLG1 disease mutations and germline variants promote tumorigenic properties, PLoS One, 10, e0139846.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rieder, M. J., Taylor, S. L., Tobe, V. O., and Nickerson, D. A. (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome, Nucleic Acids Res., 26, 967–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Biasi, S., Gibellini, L., and Cossarizza, A. (2015) Uncompensated polychromatic analysis of mitochondrial membrane potential using JC-1 and multilaser excitation, Curr. Protoc. Cytom., 72, 1–11.

    Google Scholar 

  53. Cowell, J. K., Wang, Y. D., Head, K., Conroy, J., McQuaid, D., and Nowak, N. J. (2004) Identification and characterization of constitutional chromosome abnormalities using arrays of bacterial artificial chromosomes, Br. J. Cancer, 90, 860–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iwabuchi, T., Yoshimoto, C., Shigetomi, H., and Kobayashi, H. (2015) Oxidative stress and antioxidant defense in endometriosis and its malignant transformation, Oxid. Med. Cell. Longev., 2015, 848595.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Khandrika, L., Kumar, B., Koul, S., Maroni, P., and Koul, H. K. (2009) Oxidative stress in prostate cancer, Cancer Lett., 282, 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mahalingaiah, P. K., Ponnusamy, L., and Singh, K. P. (2015) Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells, J. Cell. Physiol., 230, 1916–1928.

    Article  CAS  PubMed  Google Scholar 

  57. Reuter, S., Gupta, S. C., Chaturvedi, M. M., and Aggarwal, B. B. (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 49, 1603–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bedard, K., and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev., 87, 245–313.

    Article  CAS  PubMed  Google Scholar 

  59. Graham, K. A., Kulawiec, M., Owens, K. M., Li, X., Desouki, M. M., Chandra, D., and Singh, K. K. (2010) NADPH oxidase 4 is an oncoprotein localized to mitochondria, Cancer Biol. Ther., 10, 223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kulawiec, M., Owens, K. M., and Singh, K. K. (2009) Cancer cell mitochondria confer apoptosis resistance and promote metastasis, Cancer Biol. Ther., 8, 1378–1385.

    Article  CAS  PubMed  Google Scholar 

  61. Kulawiec, M., Owens, K. M., and Singh, K. K. (2009) mtDNA G10398A variant in African-American women with breast cancer provides resistance to apoptosis and promotes metastasis in mice, J. Hum. Genet., 54, 647–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lane, D. P. (1992) Cancer. p53, guardian of the genome, Nature, 358, 15–16.

    Article  CAS  PubMed  Google Scholar 

  63. Park, J. H., Zhuang, J., Li, J., and Hwang, P. M. (2016) p53 as guardian of the mitochondrial genome, FEBS Lett., 590, 924–934.

    Article  CAS  PubMed  Google Scholar 

  64. Agapova, L. S., Ilyinskaya, G. V., Turovets, N. A., Ivanov, A. V., Chumakov, P. M., and Kopnin, B. P. (1996) Chromosome changes caused by alterations of p53 expression, Mutat. Res., 354, 129–138.

    Article  PubMed  Google Scholar 

  65. Kirsch, D. G., and Kastan, M. B. (1998) Tumor-suppressor p53: implications for tumor development and prognosis, J. Clin. Oncol., 16, 3158–3168.

    CAS  PubMed  Google Scholar 

  66. Van Oijen, M. G., and Slootweg, P. J. (2000) Gain-of-function mutations in the tumor suppressor gene p53, Clin. Cancer Res., 6, 2138–2145.

    PubMed  Google Scholar 

  67. Warburg, O. (1956) On respiratory impairment in cancer cells, Science, 124, 269–270.

    CAS  PubMed  Google Scholar 

  68. Alberio, S., Mineri, R., Tiranti, V., and Zeviani, M. (2007) Depletion of mtDNA: syndromes and genes, Mitochondrion, 7, 6–12.

    Article  CAS  PubMed  Google Scholar 

  69. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  70. Modica-Napolitano, J. S., Kulawiec, M., and Singh, K. K. (2007) Mitochondria and human cancer, Curr. Mol. Med., 7, 121–131.

    Article  CAS  PubMed  Google Scholar 

  71. Pedersen, P. L. (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e. elevated glycolysis in the presence of oxygen, J. Bioenerg. Biomembr., 39, 211–222.

    Article  CAS  PubMed  Google Scholar 

  72. Legros, F., Lombes, A., Frachon, P., and Rojo, M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins, Mol. Biol. Cell, 13, 4343–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Westrate, L. M., Drocco, J. A., Martin, K. R., Hlavacek, W. S., and MacKeigan, J. P. (2014) Mitochondrial morphological features are associated with fission and fusion events, PLoS One, 9, e95265.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine, Annu. Rev. Genet., 39, 359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wallace, D. C. (2005) Mitochondria and cancer: Warburg addressed, Cold Spring Harb. Symp. Quant. Biol., 70, 363–374.

    Article  CAS  PubMed  Google Scholar 

  76. Huang, C., Ke, Q., Costa, M., and Shi, X. (2004) Molecular mechanisms of arsenic carcinogenesis, Mol. Cell. Biochem., 255, 57–66.

    Article  CAS  PubMed  Google Scholar 

  77. Rossman, T. G. (2003) Mechanism of arsenic carcinogenesis: an integrated approach, Mutat. Res., 533, 37–65.

    Article  CAS  PubMed  Google Scholar 

  78. Tchounwou, P. B., Centeno, J. A., and Patlolla, A. K. (2004) Arsenic toxicity, mutagenesis, and carcinogenesis–a health risk assessment and management approach, Mol. Cell. Biochem., 255, 47–55.

    Article  CAS  PubMed  Google Scholar 

  79. Liu, S. X., Athar, M., Lippai, I., Waldren, C., and Hei, T. K. (2001) Induction of oxy-radicals by arsenic: implication for mechanism of genotoxicity, Proc. Natl. Acad. Sci. USA, 98, 1643–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Singh, K. P., Kumari, R., Treas, J., and DuMond, J. W. (2011) Chronic exposure to arsenic causes increased cell survival, DNA damage, and increased expression of mitochondrial transcription factor A (mtTFA) in human prostate epithelial cells, Chem. Res. Toxicol., 24, 340–349.

    Article  CAS  PubMed  Google Scholar 

  81. Yamanaka, K., Kato, K., Mizoi, M., An, Y., Takabayashi, F., Nakano, M., Hoshino, M., and Okada, S. (2004) The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis, Toxicol. Appl. Pharmacol., 198, 385–393.

    Article  CAS  PubMed  Google Scholar 

  82. Koopman, W. J., Nijtmans, L. G., Dieteren, C. E., Roestenberg, P., Valsecchi, F., Smeitink, J. A., and Willems, P. H. (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation, Antioxid. Redox Signal., 12, 1431–1470.

    Article  CAS  PubMed  Google Scholar 

  83. Huang, G., Lu, H., Hao, A., Ng, D. C., Ponniah, S., Guo, K., Lufei, C., Zeng, Q., and Cao, X. (2004) GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I, Mol. Cell. Biol., 24, 8447–8456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Polsky, D., and Cordon-Cardo, C. (2003) Oncogenes in melanoma, Oncogene, 22, 3087–3091.

    Article  CAS  PubMed  Google Scholar 

  85. Ngalame, N. N., Tokar, E. J., Person, R. J., and Waalkes, M. P. (2014) Silencing KRAS overexpression in arsenictransformed prostate epithelial and stem cells partially mitigates malignant phenotype, Toxicol. Sci., 142, 489–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ngalame, N. N., Tokar, E. J., Person, R. J., Xu, Y., and Waalkes, M. P. (2014) Aberrant microRNA expression likely controls ras oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic, Toxicol. Sci., 138, 268–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G. M., Budinger, G. R., and Chandel, N. S. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc. Natl. Acad. Sci. USA, 107, 8788–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kulawiec, M., Ayyasamy, V., and Singh, K. K. (2009) p53 regulates mtDNA copy number and mito-checkpoint pathway, J. Carcinog., 8, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kulawiec, M., Safina, A., Desouki, M. M., Still, I., Matsui, S., Bakin, A., and Singh, K. K. (2008) Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion, Cancer Biol. Ther., 7, 1732–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Donthamsetty, S., Brahmbhatt, M., Pannu, V., Rida, P. C., Ramarathinam, S., Ogden, A., Cheng, A., Singh, K. K., and Aneja, R. (2014) Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis, Cell Cycle, 13, 2056–2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Minocherhomji, S., Tollefsbol, T. O., and Singh, K. K. (2012) Mitochondrial regulation of epigenetics and its role in human diseases, Epigenetics, 7, 326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, F., Paramasivam, M., Cai, Q., Dai, X., Wang, P., Lin, K., Song, J., Seidman, M. M., and Wang, Y. (2014) Arsenite binds to the RING finger domains of RNF20-RNF40 histone E3 ubiquitin ligase and inhibits DNA double-strand break repair, J. Am. Chem. Soc., 136, 12884–12887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kennedy, S. R., Loeb, L. A., and Herr, A. J. (2012) Somatic mutations in aging, cancer and neurodegeneration, Mech. Ageing Dev., 133, 118–126.

    Article  CAS  PubMed  Google Scholar 

  94. Delsite, R. L., Rasmussen, L. J., Rasmussen, A. K., Kalen, A., Goswami, P. C., and Singh, K. K. (2003) Mitochondrial impairment is accompanied by impaired oxidative DNA repair in the nucleus, Mutagenesis, 18, 497–503.

    Article  CAS  PubMed  Google Scholar 

  95. Rasmussen, A. K., Chatterjee, A., Rasmussen, L. J., and Singh, K. K. (2003) Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae, Nucleic Acids Res., 31, 3909–3917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Singh.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1359–1370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Kulawiec, M., Owens, K.M. et al. Sustained early disruption of mitochondrial function contributes to arsenic-induced prostate tumorigenesis. Biochemistry Moscow 81, 1089–1100 (2016). https://doi.org/10.1134/S0006297916100072

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100072

Key words

Navigation