Skip to main content
Log in

Plant Proteases Involved in Regulated Cell Death

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death–a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

NCCD:

Nomenclature Committee on Cell Death

PCD:

programmed cell death

PS-SCL:

positional scanning substrate combinatorial library

RCD:

regulated cell death

VPE:

vacuolar processing enzyme.

References

  1. Galluzzi, L., Bravo-San Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Alnemri, E. S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E. H., Bazan, N. G., Bertrand, M. J., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F. K., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Dawson, T. M., Dawson, V. L., De Laurenzi, V., De Maria, R., Debatin, K. M., Di Daniele, N., Dixit, V. M., Dynlacht, B. D., El-Deiry, W. S., Fimia, G. M., Flavell, R. A., Fulda, S., Garrido, C., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Joseph, B., Jost, P. J., Kaufmann, T., Kepp, O., Klionsky, D. J., Knight, R. A., Kumar, S., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., Lopez-Otin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J. M., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Ravichandran, K. S., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Shi, Y., Simon, H. U., Stockwell, B. R., Szabadkai, G., Tait, S. W., Tang, H. L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E. F., Walczak, H., White, E., Wood, W. G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G., and Kroemer, G. (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ., 22, 58–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lockshin, R. A. (2008) Early work on apoptosis, an interview with Richard Lockshin, Cell Death Differ., 15, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  3. Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V., Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., and Melino, G. (2005) Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ., 12, 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  4. Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nuñez, G., Peter, M. E., Piacentini, M., Rubinsztein, D. C., Shi, Y., Simon, H. U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 19, 107–120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Crawford, E. D., and Wells, J. A. (2011) Caspase substrates and cellular remodeling, Annu. Rev. Biochem., 80, 1055–1087.

    Article  PubMed  CAS  Google Scholar 

  6. Van Doorn, W. G., Beers, E. P., Dangl, J. L., Franklin-Tong, V. E., Gallois, P., Hara-Nishimura, I., Jones, A. M., Kawai-Yamada, M., Lam, E., Mundy, J., Mur, L. A., Petersen, M., Smertenko, A., Taliansky, M., Van Breusegem, F., Wolpert, T., Woltering, E., Zhivotovsky, B., and Bozhkov, P. V. (2011) Morphological classification of plant cell deaths, Cell Death Differ., 18, 1241–1246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sanchez-Vallet, A., Mesters, J. R., and Thomma, B. P. (2015) The battle for chitin recognition in plant−microbe interactions, FEMS Microbiol. Rev., 39, 171–183.

    Article  PubMed  Google Scholar 

  8. Solovieva, A. D., Frolova, O. Yu., Solovyev, A. G., Morozov, S. Yu., and Zamyatnin, A. A., Jr. (2013) Effect of mitochondria-targeted antioxidant SkQ1 on programmed cell death induced by viral proteins in tobacco plants, Biochemistry (Moscow), 78, 1006–1012.

    Article  CAS  Google Scholar 

  9. Lukhovitskaya, N. I., Yelina, N. E., Zamyatnin, A. A., Jr., Schepetilnikov, M. V., Solovyev, A. G., Sandgren, M., Morozov, S. Y., Valkonen, J. P., and Savenkov, E. I. (2005) Expression, localization and effects on virulence of the cys-teine-rich 8 kDa protein of Potato mop-top virus, J. Gen. Virol., 86, 2879–2889.

    Article  PubMed  CAS  Google Scholar 

  10. Ye, C. M., Chen, S., Payton, M., Dickman, M. B., and Verchot, J. (2013) TGBp3 triggers the unfolded protein response and SKP1-dependent programmed cell death, Mol. Plant Pathol., 14, 241–255.

    Article  PubMed  CAS  Google Scholar 

  11. Petrov, V., Hille, J., Mueller-Roeber, B., and Gechev, T. S. (2015) ROS-mediated abiotic stress-induced programmed cell death in plants, Front. Plant Sci, 6, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., and Pinelli, E. (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants, Rev. Environ. Contam. Toxicol., 232, 1–44.

    PubMed  CAS  Google Scholar 

  13. Danon, A., Rotari, V. I., Gordon, A., Mailhac, N., and Gallois, P. (2004) Ultraviolet-C overexposure induces pro-grammed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by cas-pase inhibitors, p35 and defender against apoptotic death, J. Biol. Chem., 279, 779–787.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, Y., Wang, M., Bai, Y., Zeng, Z., Guo, F., Han, N., Bian, H., Wang, J., Pan, J., and Zhu, M. (2014) Bcl-2 sup-presses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice, Plant Physiol. Biochem., 80, 168–175.

    Article  PubMed  CAS  Google Scholar 

  15. Li, Z., Yue, H., and Xing, D. (2012) MAP kinase 6-medi-ated activation of vacuolar processing enzyme modulates heat shock-induced programmed cell death in Arabidopsis, New Phytol., 195, 85–96.

    Article  PubMed  CAS  Google Scholar 

  16. Bagniewska-Zadworna, A., Arasimowicz-Jelonek, M., Smolinski, D. J., and Stelmasik, A. (2015) New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field condi-tions, Ann. Bot., 113, 1235–1247.

    Article  CAS  Google Scholar 

  17. Avci, U., Petzold, H. E., Ismail, I. O., Beers, E. P., and Haigler, C. H. (2008) Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots, Plant J., 56, 303–315.

    Article  PubMed  CAS  Google Scholar 

  18. Del Pozo, O., and Lam, E. (1998) Caspases and pro-grammed cell death in the hypersensitive response of plants to pathogens, Curr. Biol., 8, 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  19. Bonneau, L., Ge, Y., Drury, G. E., and Gallois, P. (2008) What happened to plant caspases? J. Exp. Bot., 59, 491–499.

    Article  PubMed  CAS  Google Scholar 

  20. Sasaki, T. (1998) The rice genome project in Japan, Proc. Natl. Acad. Sci. USA, 95, 2027–2028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dennis, C., and Surridge, C. (2000) Arabidopsis thaliana genome. Introduction, Nature, 408, 791.

    Article  PubMed  CAS  Google Scholar 

  22. Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death, Science, 305, 855–858.

    Article  PubMed  CAS  Google Scholar 

  23. Rojo, E., Martin, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., Jin, H., Paneque, M., Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M., and Raikhel, N. V. (2004) VPEgamma exhibits a caspase-like activity that contributes to defense against pathogens, Curr. Biol., 14, 1897–1906.

    Article  PubMed  CAS  Google Scholar 

  24. Rawlings, N. D., Waller, M., Barrett, A. J., and Bateman, A. (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res., 42, 503–509.

    Article  CAS  Google Scholar 

  25. Hiraiwa, N., Nishimura, M., and Hara-Nishimura, I. (1999) Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides, FEBS Lett., 447, 213–216.

    Article  PubMed  CAS  Google Scholar 

  26. Kuroyanagi, M., Nishimura, M., and Hara-Nishimura, I. (2002) Activation of Arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the C-terminal propeptide, Plant Cell Physiol., 43, 143–151.

    Article  PubMed  CAS  Google Scholar 

  27. Hara-Nishimura, I., and Hatsugai, N. (2011) The role of vacuole in plant cell death, Cell Death Differ., 18, 1298–1304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hatsugai, N., Yamada, K., Goto-Yamada, S., and Hara-Nishimura, I. (2015) Vacuolar processing enzyme in plant programmed cell death, Front. Plant Sci., 6, 234.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hara-Nishimura, I., Hatsugai, N., Nakaune, S., Kuroyanagi, M., and Nishimura, M. (2005) Vacuolar pro-cessing enzyme: an executor of plant cell death, Curr. Opin. Plant Biol., 8, 404–408.

    Article  PubMed  CAS  Google Scholar 

  30. Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana, J. Biol. Chem., 280, 32914–32920.

    Article  PubMed  CAS  Google Scholar 

  31. Gauthier, A., Lamotte, O., Reboutier, D., Bouteau, F., Pugin, A., and Wendehenne, D. (2007) Cryptogein-induced anion effluxes: electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death, Plant Signal. Behav., 2, 86–95.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar, D., Rampuria, S., Singh, N. K., Shukla, P., and Kirti, P. B. (2015) Characterization of a vacuolar process-ing enzyme expressed in Arachis diogoi in resistance responses against late leaf spot pathogen, Phaeoisariopsis personata, Plant Mol. Biol., 88, 177–191.

    Article  PubMed  CAS  Google Scholar 

  33. Qiang, X., Zechmann, B., Reitz, M. U., Kogel, K. H., and Schafer, P. (2012) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplas-mic reticulum stress-triggered caspase-dependent cell death, Plant Cell, 24, 794–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Deng, M., Bian, H., Xie, Y., Kim, Y., Wang, W., Lin, E., Zeng, Z., Guo, F., Pan, J., Han, N., Wang, J., Qian, Q., and Zhu, M. (2011) Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice, FEBS J., 278, 4797–4810.

    Article  PubMed  CAS  Google Scholar 

  35. Kadono, T., Tran, D., Errakhi, R., Hiramatsu, T., Meimoun, P., Briand, J., Iwaya-Inoue, M., Kawano, T., and Bouteau, F. (2010) Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death, PLoS One, 5, e13373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yakimova, E. T., Kapchina-Toteva, V. M., Laarhoven, L. J., Harren, F. M., and Woltering, E. J. (2006) Involvement of ethylene and lipid signaling in cadmium-induced pro-grammed cell death in tomato suspension cells, Plant Physiol. Biochem., 44, 581–589.

    Article  PubMed  CAS  Google Scholar 

  37. Yakimova, E. T., Kapchina-Toteva, V. M., and Woltering, E. J. (2007) Signal transduction events in aluminum-induced cell death in tomato suspension cells, J. Plant Physiol., 164, 702–708.

    Article  PubMed  CAS  Google Scholar 

  38. Kariya, K., Demiral, T., Sasaki, T., Tsuchiya, Y., Turkan, I., Sano, T., Hasezawa, S., and Yamamoto, Y. (2013) A novel mechanism of aluminum-induced cell death involving vac-uolar processing enzyme and vacuolar collapse in tobacco cell line BY-2, J. Inorg. Biochem., 128, 196–201.

    Article  PubMed  CAS  Google Scholar 

  39. Nakaune, S., Yamada, K., Kondo, M., Kato, T., Tabata, S., Nishimura, M., and Hara-Nishimura, I. (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat for-mation at the early stage of seed development, Plant Cell, 17, 876–887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Radchuk, V., Weier, D., Radchuk, R., Weschke, W., and Weber, H. (2011) Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell dis-integration and coordinated with endosperm growth, J. Exp. Bot., 62, 1217–1227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tran, V., Weier, D., Radchuk, R., Thiel, J., and Radchuk, V. (2014) Caspase-like activities accompany programmed cell death events in developing barley grains, PLoS One, 9, e109426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kinoshita, T., Yamada, K., Hiraiwa, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions, Plant J., 19, 43–53.

    Article  PubMed  CAS  Google Scholar 

  43. Muller, G. L., Drincovich, M. F., Andreo, C. S., and Lara, M. V. (2010) Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower, J. Exp. Bot., 61, 3675–3688.

    Article  PubMed  CAS  Google Scholar 

  44. Uren, A. G., O’Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V., and Dixit, V. M. (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma, Mol. Cell, 6, 961–967.

    PubMed  CAS  Google Scholar 

  45. Vercammen, D., Van de Cotte, B., De Jaeger, G., Eeckhout, D., Casteels, P., Vandepoele, K., Vandenberghe, I., Van Beeumen, J., Inze, D., and Van Breusegem, F. (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine, J. Biol. Chem., 279, 45329–45336.

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe, N., and Lam, E. (2005) Two Arabidopsis meta-caspases AtMCP1b and AtMCP2b are arginine/lysine-spe-cific cysteine proteases and activate apoptosis-like cell death in yeast, J. Biol. Chem., 280, 14691–14699.

    Article  PubMed  CAS  Google Scholar 

  47. Bozhkov, P. V., Suarez, M. F., Filonova, L. H., Daniel, G., Zamyatnin, A. A., Jr., Rodriguez-Nieto, S., Zhivotovsky, B., and Smertenko, A. (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogene-sis, Proc. Natl. Acad. Sci. USA, 102, 14463–14468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tsiatsiani, L., Van Breusegem, F., Gallois, P., Zavialov, A., Lam, E., and Bozhkov, P. V. (2011) Metacaspases, Cell Death Differ., 18, 1279–1288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Acosta-Maspons, A., Sepulveda-Garcia, E., Sanchez-Baldoquin, L., Marrero-Gutierrez, J., Pons, T., Rocha-Sosa, M., and Gonzalez, L. (2014) Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-bind-ing pocket, Planta, 239, 147–160.

    Article  PubMed  CAS  Google Scholar 

  50. Fagundes, D., Bohn, B., Cabreira, C., Leipelt, F., Dias, N., Bodanese-Zanettini, M. H., and Cagliari, A. (2015) Caspases in plants: metacaspase gene family in plant stress responses, Funct. Integr. Genom., 15, 639–649.

    Article  CAS  Google Scholar 

  51. Choi, C. J., and Berges, J. A. (2013) New types of metacas-pases in phytoplankton reveal diverse origins of cell death proteases, Cell Death Dis., 4, e490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wen, S., Ma, Q. M., Zhang, Y. L., Yang, J. P., Zhao, G. H., Fu, D. Q., Luo, Y. B., and Qu, G. Q. (2013) Biochemical evidence of key residues for the activation and autoprocess-ing of tomato type II metacaspase, FEBS Lett., 587, 2517–2522.

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe, N., and Lam, E. (2011) Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d, J. Biol. Chem., 286, 10027–10040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang, Y., and Lam, E. (2011) Sheathing the swords of death: post-translational modulation of plant metacaspas-es, Plant Signal. Behav., 6, 2051–2056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Belenghi, B., Romero-Puertas, M. C., Vercammen, D., Brackenier, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue, J. Biol. Chem., 282, 1352–1358.

    Article  PubMed  CAS  Google Scholar 

  56. Huang, L., Zhang, H., Hong, Y., Liu, S., Li, D., and Song, F. (2015) Stress-responsive expression, subcellular localiza-tion and protein–protein interactions of the rice metacas-pase family, Int. J. Mol. Sci., 16, 16216–16241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bollhoner, B., Zhang, B., Stael, S., Denance, N., Overmyer, K., Goffner, D., Van Breusegem, F., and Tuominen, H. (2013) Post mortem function of AtMC9 in xylem vessel elements, New Phytol., 200, 498–510.

    Article  PubMed  CAS  Google Scholar 

  58. Tsiatsiani, L., Timmerman, E., De Bock, P. J., Vercammen, D., Stael, S., Van de Cotte, B., Staes, A., Goethals, M., Beunens, T., Van Damme, P., Gevaert, K., and Van Breusegem, F. (2013) The Arabidopsis metacaspase 9 degradome, Plant Cell, 25, 2831–2847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Coll, N. S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J. L., and Epple, P. (2010) Arabidopsis type I metacaspases control cell death, Science, 330, 1393–1397.

    Article  PubMed  CAS  Google Scholar 

  60. Coll, N. S., Smidler, A., Puigvert, M., Popa, C., Valls, M., and Dangl, J. L. (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy, Cell Death Differ., 21, 1399–1408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kim, S. M., Bae, C., Oh, S. K., and Choi, D. (2013) A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants, Mol. Plant Pathol., 14, 557–566.

    Article  PubMed  CAS  Google Scholar 

  62. Wang, X., Wang, X., Feng, H., Tang, C., Bai, P., Wei, G., Huang, L., and Kang, Z. (2012) TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici, Mol. Plant Microbe Interact., 25, 755–764.

    Article  PubMed  CAS  Google Scholar 

  63. Hao, L., Goodwin, P. H., and Hsiang, T. (2007) Expression of a metacaspase gene of Nicotiana benthamiana after inoc-ulation with Colletotrichum destructivum or Pseudomonas syringae pv. tomato, and the effect of silencing the gene on the host response, Plant Cell Rep., 26, 1879–1888.

    Article  PubMed  CAS  Google Scholar 

  64. Watanabe, N., and Lam, E. (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biot-ic and abiotic stresses, Plant J., 66, 969–982.

    Article  PubMed  CAS  Google Scholar 

  65. He, R., Drury, G. E., Rotari, V. I., Gordon, A., Willer, M., Farzaneh, T., Woltering, E. J., and Gallois, P. (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis, J. Biol. Chem., 283, 774–783.

    Article  PubMed  CAS  Google Scholar 

  66. Minina, E. A., Filonova, L. H., Fukada, K., Savenkov, E. I., Gogvadze, V., Clapham, D., Sanchez-Vera, V., Suarez, M. F., Zhivotovsky, B., Daniel, G., Smertenko, A., and Bozhkov, P. V. (2013) Autophagy and metacaspase deter-mine the mode of cell death in plants, J. Cell Biol., 203, 917–927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wrzaczek, M., Vainonen, J. P., Stael, S., Tsiatsiani, L., Help-Rinta-Rahko, H., Gauthier, A., Kaufholdt, D., Bollhoner, B., Lamminmaki, A., Staes, A., Gevaert, K., Tuominen, H., Van Breusegem, F., Helariutta, Y., and Kangasjarvi, J. (2015) GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis, EMBO J., 34, 55–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Vercammen, D., Belenghi, B., Van de Cotte, B., Beunens, T., Gavigan, J. A., De Rycke, R., Brackenier, A., Inze, D., Harris, J. L., and Van Breusegem, F. (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9, J. Mol. Biol., 364, 625–636.

    Article  PubMed  CAS  Google Scholar 

  69. Sundstrom, J. F., Vaculova, A., Smertenko, A. P., Savenkov, E. I., Golovko, A., Minina, E., Tiwari, B. S., Rodriguez-Nieto, S., Zamyatnin, A. A., Jr., Valineva, T., Saarikettu, J., Frilander, M. J., Suarez, M. F., Zavialov, A., Stahl, U., Hussey, P. J., Silvennoinen, O., Sundberg, E., Zhivotovsky, B., and Bozhkov, P. V. (2009) Tudor staphylococcal nucle-ase is an evolutionarily conserved component of the pro-grammed cell death degradome, Nat. Cell Biol., 11, 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  70. Caudy, A. A., Ketting, R. F., Hammond, S. M., Denli, A. M., Bathoorn, A. M., Tops, B. B., Silva, J. M., Myers, M. M., Hannon, G. J., and Plasterk, R. H. (2003) A micro-coccal nuclease homologue in RNAi effector complexes, Nature, 425, 411–414.

    Article  PubMed  CAS  Google Scholar 

  71. Scadden, A. D. (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage, Nat. Struct. Mol. Biol., 12, 489–496.

    Article  PubMed  CAS  Google Scholar 

  72. Hundley, H. A., and Bass, B. L. (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences, Trends Biochem. Sci., 35, 377–383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zamyatnin, A. A., Jr., Lyamzaev, K. G., and Zinovkin, R. A. (2010) A-to-I RNA editing: a contribution to diversity of the transcriptome and an organism’s development, Biochemistry (Moscow), 75, 1316–1323.

    Article  CAS  Google Scholar 

  74. Gutierrez-Beltran, E., Moschou, P. N., Smertenko, A. P., and Bozhkov, P. V. (2015) Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis, Plant Cell, 27, 926–943.

    Article  PubMed  CAS  Google Scholar 

  75. Strobel, I., and Osiewacz, H. D. (2013) Poly(ADP-ribose) polymerase is a substrate recognized by two metacaspases of Podospora anserine, Eukaryot. Cell, 12, 900–912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Martinez, M., Cambra, I., Gonzalez-Melendi, P., Santamaria, M. E., and Diaz, I. (2012) C1A cysteine-pro-teases and their inhibitors in plants, Physiol. Plant., 145, 85–94.

    Article  PubMed  CAS  Google Scholar 

  77. Trobacher, C. P., Senatore, A., and Greenwood, J. S. (2006) Masterminds or minions? Cysteine proteinases in plant programmed cell death, Can. J. Bot., 84, 651–667.

    Article  CAS  Google Scholar 

  78. Turk, V., Turk, B., and Turk, D. (2001) Lysosomal cysteine proteases: facts and opportunities, EMBO J., 20, 4629–4633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Than, M. E., Helm, M., Simpson, D. J., Lottspeich, F., Huber, R., and Gietl, C. (2004) The 2.0 Å crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm, J. Mol. Biol., 336, 1103–1116.

    Article  PubMed  CAS  Google Scholar 

  80. Richau, K. H., Kaschani, F., Verdoes, M., Pansuriya, T. C., Niessen, S., Stuber, K., Colby, T., Overkleeft, H. S., Bogyo, M., and Van der Hoorn, R. A. (2012) Subclassification and biochemical analysis of plant papain-like cysteine proteas-es displays subfamily-specific characteristics, Plant Physiol., 158, 1583–1599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hierl, G., Howing, T., Isono, E., Lottspeich, F., and Gietl, C. (2014) Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles, Plant Mol. Biol., 84, 605–620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Liu, H., Chen, L., Li, Q., Zheng, M., and Liu, J. (2014) Computational study on substrate specificity of a novel cys-teine protease 1 precursor from Zea mays, Int. J. Mol. Sci., 15, 10459–10478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Savvateeva, L. V., Gorokhovets, N. V., Makarov, V. A., Serebryakova, M. V., Solovyev, A. G., Morozov, S. Y., Reddy, V. P., Zernii, E. Y., Zamyatnin, A. A., Jr., and Aliev, G. (2015) Glutenase and collagenase activities of wheat cysteine protease Triticain-α: feasibility for enzymatic ther-apy assays, Int. J. Biochem. Cell Biol., 62, 115–124.

    Article  PubMed  CAS  Google Scholar 

  84. Van der Hoorn, R. A. (2008) Plant proteases: from pheno-types to molecular mechanisms, Annu. Rev. Plant Biol., 59, 191–223.

    Article  PubMed  CAS  Google Scholar 

  85. Schmid, M., Simpson, D., Kalousek, F., and Gietl, C. (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment, Planta, 206, 466–475.

    Article  PubMed  CAS  Google Scholar 

  86. Schmid, M., Simpson, D. J., Sarioglu, H., Lottspeich, F., and Gietl, C. (2001) The ricinosomes of senescing plant tis-sue bud from the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA, 98, 5353–5358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gu, C., Shabab, M., Strasser, R., Wolters, P. J., Shindo, T., Niemer, M., Kaschani, F., Mach, L., and Van der Hoorn, R. A. (2012) Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana, PLoS One, 7, e32422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Madureira, H. C., Da Cunha, M., and Jacinto, T. (2006) Immunolocalization of a defense-related 87 kDa cystatin in leaf blade of tomato plants, Environ. Exp. Bot., 55, 201–208.

    Article  CAS  Google Scholar 

  89. Martinez, M., and Diaz, I. (2008) The origin and evolution of plant cystatins and their target cysteine proteinases indi-cate a complex functional relationship, BMC Evol. Biol., 8, 198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nissen, M. S., Kumar, G. N., Youn, B., Knowles, D. B., Lam, K. S., Ballinger, W. J., Knowles, N. R., and Kang, C. (2009) Characterization of Solanum tuberosum multicys-tatin and its structural comparison with other cystatins, Plant Cell, 21, 861–875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Green, A. R., Nissen, M. S., Kumar, G. N., Knowles, N. R., and Kang, C. (2013) Characterization of Solanum tuberosum multicystatin and the significance of core domains, Plant Cell, 25, 5043–5052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Martinez, M., Diaz-Mendoza, M., Carrillo, L., and Diaz, I. (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases, FEBS Lett., 581, 2914–2918.

    Article  PubMed  CAS  Google Scholar 

  93. Margis-Pinheiro, M., Zolet, A. C., Loss, G., Pasquali, G., and Margis, R. (2008) Molecular evolution and diversifica-tion of plant cysteine proteinase inhibitors: new insights after the poplar genome, Mol. Phylogenet. Evol., 49, 349–355.

    Article  PubMed  CAS  Google Scholar 

  94. Lampl, N., Budai-Hadrian, O., Davydov, O., Joss, T. V., Harrop, S. J., Curmi, P. M., Roberts, T. H., and Fluhr, R. (2010) Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21), J. Biol. Chem., 285, 13550–13560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Fluhr, R., Lampl, N., and Roberts, T. H. (2012) Serpin protease inhibitors in plant biology, Physiol. Plant., 145, 95–102.

    Article  PubMed  CAS  Google Scholar 

  96. Ahmed, S. U., Rojo, E., Kovaleva, V., Venkataraman, S., Dombrowski, J. E., Matsuoka, K., and Raikhel, N. V. (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-con-taining vacuolar proteins in Arabidopsis thaliana, J. Cell Biol., 149, 1335–1344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F., Kieliszewski, M. J., and Gietl, C. (2008) KDEL-tailed cysteine endopeptidases involved in pro-grammed cell death, intercalation of new cells, and dis-mantling of extensin scaffolds, J. Bot., 95, 1049–1062.

    Article  CAS  Google Scholar 

  98. Greenwood, J. S., Helm, M., and Gietl, C. (2005) Ricinosomes and endosperm transfer cell structure in pro-grammed cell death of the nucellus during Ricinus seed development, Proc. Natl. Acad. Sci. USA, 102, 2238–2243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Howing, T., Huesmann, C., Hoefle, C., Nagel, M. K., Isono, E., Hückelhoven, R., and Gietl, C. (2014) Endoplasmic reticulum KDEL-tailed cysteine endopepti-dase 1 of Arabidopsis (AtCEP1) is involved in pathogen defense, Front. Plant Sci., 5, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hierl, G., Vothknecht, U., and Gietl, C. (2012) Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development, Physiol. Plant., 145, 103–113.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., Li, F., and Lu, H. (2014) The cysteine protease CEP1, a key execu-tor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis, Plant Cell, 26, 2939–2961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Valpuesta, V., Lange, N. E., Guerrero, C., and Reid, M. S. (1995) Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemero-callis) flowers, Plant Mol. Biol., 28, 575–582.

    Article  PubMed  CAS  Google Scholar 

  103. Nadeau, J. A., Zhang, X. S., Li, J., and O’Neill, S. D. (1996) Ovule development: identification of stage-specific and tissue-specific cDNAs, Plant Cell, 8, 213–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rocha, A. J., Soares, E. L., Costa, J. H., Costa, W. L., Soares, A. A., Nogueira, F. C., Domont, G. B., and Campos, F. A. (2013) Differential expression of cysteine peptidase genes in the inner integument and endosperm of developing seeds of Jatropha curcas L. (Euphorbiaceae), Plant Sci., 213, 30–37.

    Article  PubMed  CAS  Google Scholar 

  105. Trobacher, C. P., Senatore, A., Holley, C., and Greenwood, J. S. (2013) Induction of a ricinosomal-pro-tease and programmed cell death in tomato endosperm by gibberellic acid, Planta, 237, 665–679.

    Article  PubMed  CAS  Google Scholar 

  106. Senatore, A., Trobacher, C. P., and Greenwood, J. S. (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato, Plant Physiol., 149, 775–790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yamada, K., Matsushima, R., Nishimura, M., and Hara-Nishimura, I. (2001) A slow maturation of a cysteine pro-tease with a granulin domain in the vacuoles of senescing Arabidopsis leaves, Plant Physiol., 127, 1626–1634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Bateman, A., and Bennett, H. P. (2009) The granulin gene family: from cancer to dementia, BioEssays, 31, 1245–1254.

    Article  PubMed  CAS  Google Scholar 

  109. Carter, C., Pan, S., Zouhar, J., Avila, E. L., Girke, T., and Raikhel, N. V. (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected pro-teins, Plant Cell, 16, 3285–3303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lampl, N., Alkan, N., Davydov, O., and Fluhr, R. (2013) Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis, Plant J., 74, 498–510.

    Article  PubMed  CAS  Google Scholar 

  111. Zhao, P., Zhou, X. M., Zhang, L. Y., Wang, W., Ma, L. G., Yang, L. B., Peng, X. B., Bozhkov, P. V., and Sun, M. X. (2013) A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos, PLoS Biol., 11, e1001655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kim, M. J., Yamamoto, D., Matsumoto, K., Inoue, M., Ishida, T., Mizuno, H., Sumiya, S., and Kitamura, K. (1992) Crystal structure of papain–E64-c complex. Binding diversity of E64-c to papain S2 and S3 subsites, Biochem. J., 287, 797–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhao, C., Johnson, B. J., Kositsup, B., and Beers, E. P. (2000) Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases, Plant Physiol., 123, 1185–1196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Funk, V., Kositsup, B., Zhao, C., and Beers, E. P. (2002) The Arabidopsis xylem peptidase XCP1 is a tracheary ele-ment vacuolar protein that may be a papain ortholog, Plant Physiol., 128, 84–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Petzold, H. E., Zhao, M., and Beers, E. P. (2012) Expression and functions of proteases in vascular tissues, Physiol. Plant., 145, 121–129.

    Article  PubMed  CAS  Google Scholar 

  116. McLellan, H., Gilroy, E. M., Yun, B. W., Birch, P. R., and Loake, G. J. (2009) Functional redundancy in the Arabidopsis cathepsin B gene family contributes to basal defense, the hypersensitive response and senescence, New Phytol., 183, 408–418.

    Article  PubMed  CAS  Google Scholar 

  117. Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., Lopez, E. C., Borras-Hidalgo, O., Pritchard, L., Loake, G. J., Lacomme, C., and Birch, P. R. (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response, Plant J., 52, 1–13.

    Article  PubMed  CAS  Google Scholar 

  118. Bernoux, M., Timmers, T., Jauneau, A., Briere, C., De Wit, P. J., Marco, Y., and Deslandes, L. (2008) RD19, an Arabidopsis cysteine protease required for RRS1-R-mediat-ed resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector, Plant Cell, 20, 2252–2264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Xu, F. X., and Chye, M. L. (1999) Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal, Plant J., 17, 321–327.

    Article  PubMed  CAS  Google Scholar 

  120. Lohman, K. N., Gan, S., John, M. C., and Amasino, R. M. (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana, Physiol. Plant., 92, 322–328.

    Article  CAS  Google Scholar 

  121. Otegui, M. S., Noh, Y. S., Martinez, D. E., Vila Petroff, M. G., Staehelin, L. A., Amasino, R. M., and Guiamet, J. J. (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean, Plant J., 41, 831–844.

    Article  PubMed  CAS  Google Scholar 

  122. Singh, S., Giri, M. K., Singh, P. K., Siddiqui, A., and Nandi, A. K. (2013) Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants, J. Biosci., 38, 583–592.

    Article  PubMed  CAS  Google Scholar 

  123. Marino, G., Uria, J. A., Puente, X. S., Quesada, V., Bordallo, J., and Lopez-Otin, C. (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degrada-tion by autophagy, J. Biol. Chem., 278, 3671–3678.

    Article  PubMed  CAS  Google Scholar 

  124. Kaminskyy, V., and Zhivotovsky, B. (2012) Proteases in autophagy, Biochim. Biophys. Acta, 1824, 44–50.

    Article  PubMed  CAS  Google Scholar 

  125. Escamez, S., and Tuominen, H. (2014) Programs of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal, J. Exp. Bot., 65, 1313–1321.

    Article  PubMed  CAS  Google Scholar 

  126. Minina, E. A., Bozhkov, P. V., and Hofius, D. (2014) Autophagy as initiator or executioner of cell death, Trends Plant Sci., 19, 692–697.

    Article  PubMed  CAS  Google Scholar 

  127. Li, M., Hou, Y., Wang, J., Chen, X., Shao, Z. M., and Yin, X. M. (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates, J. Biol. Chem., 286, 7327–7338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Woo, J., Park, E., and Dinesh-Kumar, S. P. (2014) Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases, Proc. Natl. Acad. Sci. USA, 111, 863–868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chichkova, N. V., Shaw, J., Galiullina, R. A., Drury, G. E., Tuzhikov, A. I., Kim, S. H., Kalkum, M., Hong, T. B., Gorshkova, E. N., Torrance, L., Vartapetian, A. B., and Taliansky, M. (2010) Phytaspase, a relocalizable cell death promoting plant protease with caspase specificity, EMBO J., 29, 1149–1161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Chichkova, N. V., Galiullina, R. A., Taliansky, M. E., and Vartapetian, A. B. (2008) Tissue disruption activates a plant caspase-like protease with TATD cleavage specifici-ty, Plant Stress, 2, 89–95.

    Google Scholar 

  131. Dodson, G., and Wlodawer, A. (1998) Catalytic triads and their relatives, Trends Biochem. Sci., 23, 347–352.

    Article  PubMed  CAS  Google Scholar 

  132. Rautengarten, C., Steinhauser, D., Bussis, D., Stintzi, A., Schaller, A., Kopka, J., and Altmann, T. (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family, PLoS Comput. Biol., 1, e40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Schaller, A., Stintzi, A., and Graff, L. (2012) Subtilases–ver-satile tools for protein turnover, plant development, and inter-actions with the environment, Physiol. Plant., 145, 52–66.

    Article  PubMed  CAS  Google Scholar 

  134. Yamagata, H., Masuzawa, T., Nagaoka, Y., Ohnishi, T., and Iwasaki, T. (1994) Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor, J. Biol. Chem., 269, 32725–32731.

    PubMed  CAS  Google Scholar 

  135. Vartapetian, A. B., Tuzhikov, A. I., Chichkova, N. V., Taliansky, M., and Wolpert, T. J. (2011) A plant alternative to animal caspases: subtilisin-like proteases, Cell Death Differ., 18, 1289–1297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ottmann, C., Rose, R., Huttenlocher, F., Cedzich, A., Hauske, P., Kaiser, M., Huber, R., and Schaller, A. (2009) Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3, Proc. Natl. Acad. Sci. USA, 106, 17223–17228.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chichkova, N. V., Galiullina, R. A., Beloshistov, R. E., Balakireva, A. V., and Vartapetian, A. B. (2014) Phytaspases: aspartate-specific proteases involved in plant cell death, Bioorg. Khim., 40, 658–664.

    PubMed  CAS  Google Scholar 

  138. Galiullina, R. A., Kasperkiewicz, P., Chichkova, N. V., Szalek, A., Serebryakova, M. V., Poreba, M., Drag, M., and Vartapetian, A. B. (2015) Substrate specificity and possible heterologous targets of phytaspase, a plant cell death protease, J. Biol. Chem., 290, 24806–24815.

    Article  PubMed  CAS  Google Scholar 

  139. Poreba, M., Szalek, A., Kasperkiewicz, P., and Drag, M. (2014) Positional scanning substrate combinatorial library (PS-SCL) approach to define caspase substrate specificity, Methods Mol. Biol., 1133, 41–59.

    Article  PubMed  CAS  Google Scholar 

  140. Fomicheva, A. S., Tuzhikov, A. I., Beloshistov, R. E., Trusova, S. V., Galiullina, R. A., Mochalova, L. V., Chichkova, N. V., and Vartapetian, A. B. (2012) Programmed cell death in plants, Biochemistry (Moscow), 77, 1452–1464.

    Article  CAS  Google Scholar 

  141. Chichkova, N. V., Kim, S. H., Titova, E. S., Kalkum, M., Morozov, V. S., Rubtsov, Y. P., Kalinina, N. O., Taliansky, M. E., and Vartapetian, A. B. (2004) A plant caspase-like protease activated during the hypersensitive response, Plant Cell, 16, 157–171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Srivastava, R., Liu, J. X., and Howell, S. H. (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis, Plant J., 56, 219–227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Coffeen, W. C., and Wolpert, T. J. (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa, Plant Cell, 16, 857–873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Faro, C., and Gal, S. (2005) Aspartic proteinase content of the Arabidopsis genome, Curr. Prot. Pept. Sci., 6, 493–500.

    Article  CAS  Google Scholar 

  145. Dunn, B. M. (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases, Chem. Rev., 102, 4431–4458.

    Article  PubMed  CAS  Google Scholar 

  146. Geier, G., Banaj, H. J., Heid, H., Bini, L., Pallini, V., and Zwilling, R. (1999) Aspartyl proteases in Caenorhabditis elegans. Isolation, identification and characterization by a combined use of affinity chromatography, two-dimension-al gel electrophoresis, microsequencing and databank analysis, Eur. J. Biochem., 264, 872–879.

    Article  PubMed  CAS  Google Scholar 

  147. Guo, R., Xu, X., Carole, B., Li, X., Gao, M., Zheng, Y., and Wang, X. (2013) Genome-wide identification, evolu-tionary and expression analysis of the aspartic protease gene superfamily in grape, BMC Genom., 14, 554.

    Article  CAS  Google Scholar 

  148. Niu, N., Liang, W., Yang, X., Jin, W., Wilson, Z. A., Hu, J., and Zhang, D. (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice, Nat. Commun., 4, 1445.

    Article  PubMed  CAS  Google Scholar 

  149. Chen, F., and Foolad, M. R. (1997) Molecular organiza-tion of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration, Plant Mol. Biol., 35, 821–831.

    Article  PubMed  CAS  Google Scholar 

  150. Ge, X., Dietrich, C., Matsuno, M., Li, G., Berg, H., and Xia, Y. (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis, EMBO Rep., 6, 282–288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Phan, H. A., Iacuone, S., Li, S. F., and Parish, R. W. (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal pro-grammed cell death in Arabidopsis thaliana, Plant Cell, 23, 2209–2224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kurepa, J., and Smalle, J. A. (2008) Structure, function and regulation of plant proteasomes, Biochimie, 90, 324–335.

    Article  PubMed  CAS  Google Scholar 

  153. Kurepa, J., Wang, S., Li, Y., and Smalle, J. (2009) Proteasome regulation, plant growth and stress tolerance, Plant Signal. Behav., 4, 924–927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Han, J. J., Lin, W., Oda, Y., Cui, K. M., Fukuda, H., and He, X. Q. (2012) The proteasome is responsible for cas-pase-3-like activity during xylem development, Plant J., 72, 129–141.

    Article  PubMed  CAS  Google Scholar 

  155. Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., Nishimura, M., and Hara-Nishimura, I. (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens, Genes Dev., 23, 2496–2506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G., and Clark, I. M. (1999) Matrix metalloproteinase homo-logues from Arabidopsis thaliana. Expression and activity, J. Biol. Chem., 274, 34706–34710.

    Article  PubMed  CAS  Google Scholar 

  157. Marino, G., Huesgen, P. F., Eckhard, U., Overall, C. M., Schroder, W. P., and Funk, C. (2014) Family-wide charac-terization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity, Biochem. J., 457, 335–346.

    Article  PubMed  CAS  Google Scholar 

  158. Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L., and Winberg, J. O. (2011) Regulation of matrix metallopro-teinase activity in health and disease, FEBS J., 278, 28–45.

    Article  PubMed  CAS  Google Scholar 

  159. Delorme, V. G., McCabe, P. F., Kim, D. J., and Leaver, C. J. (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber, Plant Physiol., 123, 917–927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Roberts, I. N., Caputo, C., Criado, M. V., and Funk, C. (2012) Senescence-associated proteases in plants, Physiol. Plant., 145, 130–139.

    Article  PubMed  CAS  Google Scholar 

  161. Diaz-Mendoza, M., Velasco-Arroyo, B., Gonzalez-Melendi, P., Martinez, M., and Diaz, I. (2014) C1A cys-teine protease–cystatin interactions in leaf senescence, J. Exp. Bot., 65, 3825–3833.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zamyatnin Jr..

Additional information

Original Russian Text © A. A. Zamyatnin, Jr., 2015, published in Uspekhi Biologicheskoi Khimii, 2015, Vol. 55, pp. 145-180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamyatnin, A.A. Plant Proteases Involved in Regulated Cell Death. Biochemistry Moscow 80, 1701–1715 (2015). https://doi.org/10.1134/S0006297915130064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915130064

Key words

Navigation