Skip to main content
Log in

Mitochondrial matrix processes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mitochondria possess their own genome that, despite its small size, is critically important for their functioning, as it encodes several dozens of RNAs and proteins. All biochemical processes typical for bacterial and nuclear DNA are described in mitochondrial matrix: replication, repair, recombination, and transcription. Commonly, their mechanisms are similar to those found in bacteria, but they are characterized by several unique features. In this review, we provide an overall description of mitochondrial matrix processes paying special attention to the typical features of such mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BER:

base excision repair

MMR:

mismatch repair

mtDNA:

mitochondrial DNA

mTERF:

mitochondrial transcription termination factor

mtSSB:

mitochondrial protein binding to single-stranded DNA

POLG:

mitochondrial DNA polymerase

POLRMT:

mitochondrial RNA polymerase

TFAM,TFB1M and TFB2M:

mitochondrial transcription factors A, B1 and B2

Twinkle:

mitochondrial DNA helicase

References

  1. Spelbrink, J. N. (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges, IUBMB Life, 1, 19–32.

    Google Scholar 

  2. Bogenhagen, D. F. (2012) Mitochondrial DNA nucleoid structure, Biochim. Biophys. Acta, 1819, 914–920.

    Article  CAS  PubMed  Google Scholar 

  3. Bogenhagen, D. F., Rousseau, D., and Burke, S. (2008) The layered structure of human mitochondrial DNA nucleoids, J. Biol. Chem., 6, 3665–3675.

    Article  CAS  Google Scholar 

  4. Satoh, M., and Kuroiwa, T. (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell, Exp. Cell Res., 1, 137–140.

    Article  CAS  Google Scholar 

  5. Iborra, F. J., Kimura, H., and Cook, P. R. (2004) The functional organization of mitochondrial genomes in human cells, BMC Biol., 2, 9.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Legros, F., Malka, F., Frachon, P., Lombes, A., and Rojo, M. (2004) Organization and dynamics of human mitochondrial DNA, J. Cell Sci., 117, 2653–2662.

    Article  CAS  PubMed  Google Scholar 

  7. Gilkerson, R. W., Schon, E. A., Hernandez, E., and Davidson, M. M. (2008) Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation, J. Cell Biol., 7, 1117–1128.

    Article  Google Scholar 

  8. Kukat, C., Wurm, C. A., Spahr, H., Falkenberg, M., Larsson, N. G., and Jakobs, S. (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA, Proc. Natl. Acad. Sci. USA, 33, 1353413539.

    Google Scholar 

  9. Van Blerkom, J. (2009) Mitochondria in early mammalian development, Semin. Cell Dev. Biol., 3, 354–364.

    Article  CAS  Google Scholar 

  10. Bogenhagen, D. F. (2010) Does mtDNA nucleoid organization impact aging? Exp. Gerontol., 45, 473–477.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Goldman, S. J., Taylor, R., Zhang, Y., and Jin, S. (2010) Autophagy and the degradation of mitochondria, Mitochondrion, 4, 309–315.

    Article  CAS  Google Scholar 

  12. Holt, I. J., He, J., Mao, C. C., Boyd-Kirkup, J. D., Martinsson, P., Sembongi, H., Reyes, A., and Spelbrink, J. N. (2007) Mammalian mitochondrial nucleoids: organizing an independently minded genome, Mitochondrion, 5, 311–321.

    Article  CAS  Google Scholar 

  13. Jacobs, H. T., Lehtinen, S. K., and Spelbrink, J. N. (2000) No sex please, we’re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA, Bioessays, 6, 564–572.

    Article  Google Scholar 

  14. D’Aurelio, M., Gajewski, C. D., Lin, M. T., Mauck, W. M., Shao, L. Z., Lenaz, G., Moraes, C. T., and Manfredi, G. (2004) Heterologous mitochondrial DNA recombination in human cells, Hum. Mol. Genet., 24, 3171–3179.

    Article  CAS  Google Scholar 

  15. Elson, J. L., Andrews, R. M., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M., and Howell, N. (2001) Analysis of European mtDNAs for recombination, Am. J. Hum. Genet., 1, 145–153.

    Article  Google Scholar 

  16. Clayton, D. A., and Vinograd, J. (1967) Circular dimer and catenate forms of mitochondrial DNA in human leukemic leucocytes, Nature, 5116, 652–657.

    Article  Google Scholar 

  17. Clayton, D. A., and Vinograd, J. (1967) Complex mitochondrial DNA in leukemic and normal human myeloid cells, Proc. Natl. Acad. Sci. USA, 4, 1077–1084.

    Google Scholar 

  18. Holt, I. J., Dunbar, D. R., and Jacobs, H. T. (1997) Behavior of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent upon nuclear background, Hum. Mol. Genet., 8, 1251–1260.

    Article  Google Scholar 

  19. Tang, Y., Manfredi, G., Hirano, M., and Schon, E. A. (2000) Maintenance of human rearranged mitochondrial DNAs in long-term cultured transmitochondrial cell lines, Mol. Biol. Cell, 7, 2349–2358.

    Article  Google Scholar 

  20. Mita, S., Rizzuto, R., Moraes, C. T., Shanske, S., Arnaudo, E., Fabrizi, G. M., Koga, Y., DiMauro, S., and Schon, E. A. (1990) Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA, Nucleic Acids Res., 3, 561–567.

    Article  Google Scholar 

  21. Pohjoismaki, J. L., Goffart, S., Tyynismaa, H., Willcox, S., Ide, T., Kang, D., Suomalainen, A., Karhunen, P. J., Griffith, J. D., Holt, I. J., and Jacobs, H. T. (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks, J. Biol. Chem., 32, 21446–21457.

    Article  CAS  Google Scholar 

  22. Fan, W., Lin, C. S., Potluri, P., Procaccio, V., and Wallace, D. C. (2012) mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination, Genes Dev., 4, 384–394.

    Article  CAS  Google Scholar 

  23. Kraytsberg, Y., Schwartz, M., Brown, T. A., Ebralidse, K., Kunz, W. S., Clayton, D. A., Vissing, J., and Khrapko, K. (2004) Recombination of human mitochondrial DNA, Science, 5673, 981.

    Article  Google Scholar 

  24. Zsurka, G., Kraytsberg, Y., Kudina, T., Kornblum, C., Elger, C. E., Khrapko, K., and Kunz, W. S. (2005) Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy, Nat. Genet., 8, 873–877.

    Article  CAS  Google Scholar 

  25. Bacman, S. R., Williams, S. L., and Moraes, C. T. (2009) Intraand inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks, Nucleic Acids Res., 13, 4218–4226.

    Article  CAS  Google Scholar 

  26. Chen, X. J. (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA, Microbiol. Mol. Biol. Rev., 3, 476–496.

    Article  CAS  Google Scholar 

  27. Yang, C., Curth, U., Urbanke, C., and Kang, C. (1997) Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution, Nat. Struct. Biol., 2, 153–157.

    Article  Google Scholar 

  28. White, M. F., and Lilley, D. M. (1996) The structure-selectivity and sequence-preference of the junction-resolving enzyme CCE1 of Saccharomyces cerevisiae, J. Mol. Biol., 2, 330–341.

    Article  Google Scholar 

  29. Fogg, J. M., Schofield, M. J., Declais, A. C., and Lilley, D. M. (2000) Yeast resolving enzyme CCE1 makes sequential cleavages in DNA junctions within the lifetime of the complex, Biochemistry, 14, 4082–4089.

    Article  CAS  Google Scholar 

  30. Ohno, T., Umeda, S., Hamasaki, N., and Kang, D. (2000) Binding of human mitochondrial transcription factor A, an HMG box protein, to a four-way DNA junction, Biochem. Biophys. Res. Commun., 2, 492–498.

    Article  CAS  Google Scholar 

  31. Wang, J., Schmitt, E. S., Landsverk, M. L., Zhang, V. W., Li, F. Y., Graham, B. H., Craigen, W. J., and Wong, L. J. (2012) An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience, Genet. Med., 6, 620–626.

    Article  CAS  Google Scholar 

  32. He, Y., Wu, J., Dressman, D. C., Iacobuzio-Donahue, C., Markowitz, S. D., Velculescu, V. E., Diaz, L. A., Jr., Kinzler, K. W., Vogelstein, B., and Papadopoulos, N. (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumor cells, Nature, 7288, 610–614.

    Article  CAS  Google Scholar 

  33. Payne, B. A., Wilson, I. J., Yu- Wai-Man, P., Coxhead, J., Deehan, D., Horvath, R., Taylor, R. W., Samuels, D. C., Santibanez-Koref, M., and Chinnery, P. F. (2013) Universal heteroplasmy of human mitochondrial DNA, Hum. Mol. Genet., 2, 384–390.

    Article  CAS  Google Scholar 

  34. Wonnapinij, P., Chinnery, P. F., and Samuels, D. C. (2008) The distribution of mitochondrial DNA heteroplasmy due to random genetic drift, Am. J. Hum. Genet., 5, 582–593.

    Article  CAS  Google Scholar 

  35. Gilkerson, R. W., and Schon, E. A. (2008) Nucleoid autonomy: an underlying mechanism of mitochondrial genetics with therapeutic potential, Commun. Integr. Biol., 1, 34–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gilkerson, R. W. (2009) Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction, Int. J. Biochem. Cell Biol., 10, 1899–1906.

    Article  CAS  Google Scholar 

  37. De Grey, A. D. (2009) How is mutant mitochondrial DNA clonally amplified? Much new evidence, still no answers, Rejuv. Res., 3, 217–219.

    Article  CAS  Google Scholar 

  38. Holt, I. J., and Reyes, A. (2013) Human mitochondrial DNA replication, Cold Spring Harbor. Perspect. Biol., 4, 12.

    Google Scholar 

  39. Dean, N. L., Battersby, B. J., Ao, A., Gosden, R. G., Tan, S. L., Shoubridge, E. A., and Molnar, M. J. (2003) Prospect of preimplantation genetic diagnosis for heritable mitochondrial DNA diseases, Mol. Hum. Reprod., 10, 631638.

    Google Scholar 

  40. St. John, J. C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells, Hum. Reprod. Update, 5, 488–509.

    Article  CAS  Google Scholar 

  41. Cermakian, N., Ikeda, T. M., Miramontes, P., Lang, B. F., Gray, M. W., and Cedergren, R. (1997) On the evolution of the single-subunit RNA polymerases, J. Mol. Evol., 6, 671–681.

    Article  Google Scholar 

  42. Ringel, R., Sologub, M., Morozov, Y. I., Litonin, D., Cramer, P., and Temiakov, D. (2011) Structure of human mitochondrial RNA polymerase, Nature, 7368, 269–273.

    Article  CAS  Google Scholar 

  43. Sousa, R. (2001) T7 RNA polymerase, Uirusu, 1, 81–94.

    Article  Google Scholar 

  44. Arnold, J. J., Sharma, S. D., Feng, J. Y., Ray, A. S., Smidansky, E. D., Kireeva, M. L., Cho, A., Perry, J., Vela, J. E., Park, Y., Xu, Y., Tian, Y., Babusis, D., Barauskus, O., Peterson, B. R., Gnatt, A., Kashlev, M., Zhong, W., and Cameron, C. E. (2012) Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides, PLoS Pathog., 11, e1003030.

    Article  CAS  Google Scholar 

  45. Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2008) PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression, Biochem. J., 1, 5–6.

    Article  CAS  Google Scholar 

  46. Shadel, G. S. (2004) Coupling the mitochondrial transcription machinery to human disease, Trends Genet., 10, 513519.

    Google Scholar 

  47. Steitz, T. A., and Steitz, J. A. (1993) A general two-metalion mechanism for catalytic RNA, Proc. Natl. Acad. Sci. USA, 14, 6498–6502.

    Article  Google Scholar 

  48. Shutt, T. E., Lodeiro, M. F., Cotney, J., Cameron, C. E., and Shadel, G. S. (2010) Core human mitochondrial transcription apparatus is a regulated two-component system in vitro, Proc. Natl. Acad. Sci. USA, 27, 12133–12138.

    Article  Google Scholar 

  49. Garstka, H. L., Schmitt, W. E., Schultz, J., Sogl, B., Silakowski, B., Perez-Martos, A., Montoya, J., and Wiesner, R. J. (2003) Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA, Nucleic Acids Res., 17, 5039–5047.

    Article  CAS  Google Scholar 

  50. Ngo, H. B., Kaiser, J. T., and Chan, D. C. (2011) The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA, Nat. Struct. Mol. Biol., 11, 1290–1296.

    Article  CAS  Google Scholar 

  51. Rubio-Cosials, A., Sidow, J. F., Jimenez-Menendez, N., Fernandez-Millan, P., Montoya, J., Jacobs, H. T., Coll, M., Bernado, P., and Sola, M. (2011) Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter, Nat. Struct. Mol. Biol., 11, 12811289.

  52. Fisher, R. P., Lisowsky, T., Parisi, M. A., and Clayton, D. A. (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein, J. Biol. Chem., 5, 3358–3367.

    Google Scholar 

  53. Campbell, C. T., Kolesar, J. E., and Kaufman, B. A. (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number, Biochim. Biophys. Acta, 10, 921–929.

    Article  CAS  Google Scholar 

  54. Matsushima, Y., Goto, Y., and Kaguni, L. S. (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM), Proc. Natl. Acad. Sci. USA, 43, 18410–18415.

    Article  Google Scholar 

  55. Shutt, T. E., Bestwick, M., and Shadel, G. S. (2011) The core human mitochondrial transcription initiation complex: it only takes two to tango, Transcription, 2, 55–59.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C. M., and Larsson, N. G. (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals, Hum. Mol. Genet., 9, 935–944.

    Article  CAS  Google Scholar 

  57. Alam, T. I., Kanki, T., Muta, T., Ukaji, K., Abe, Y., Nakayama, H., Takio, K., Hamasaki, N., and Kang, D. (2003) Human mitochondrial DNA is packaged with TFAM, Nucleic Acids Res., 6, 1640–1645.

    Article  CAS  Google Scholar 

  58. Kaufman, B. A., Durisic, N., Mativetsky, J. M., Costantino, S., Hancock, M. A., Grutter, P., and Shoubridge, E. A. (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures, Mol. Biol. Cell, 9, 3225–3236.

    Article  CAS  Google Scholar 

  59. McCulloch, V., Seidel-Rogol, B. L., and Shadel, G. S. (2002) A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine, Mol. Cell. Biol., 4, 1116–1125.

    Article  CAS  Google Scholar 

  60. Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N. G., and Gustafsson, C. M. (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA, Nat. Genet., 3, 289–294.

    Article  CAS  Google Scholar 

  61. Metodiev, M. D., Lesko, N., Park, C. B., Camara, Y., Shi, Y., Wibom, R., Hultenby, K., Gustafsson, C. M., and Larsson, N. G. (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome, Cell Metab., 4, 386–397.

    Article  CAS  Google Scholar 

  62. Seidel-Rogol, B. L., McCulloch, V., and Shadel, G. S. (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop, Nat. Genet., 1, 23–24.

    Google Scholar 

  63. McCulloch, V., and Shadel, G. S. (2003) Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity, Mol. Cell. Biol., 16, 5816–5824.

    Article  CAS  Google Scholar 

  64. Cotney, J., McKay, S. E., and Shadel, G. S. (2009) Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness, Hum. Mol. Genet., 14, 2670–2682.

    Article  CAS  Google Scholar 

  65. Cotney, J., Wang, Z., and Shadel, G. S. (2007) Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFB1 and h-mtTFB2 in mitochondrial biogenesis and gene expression, Nucleic Acids Res., 12, 4042–4054.

    Article  CAS  Google Scholar 

  66. Rantanen, A., Gaspari, M., Falkenberg, M., Gustafsson, C. M., and Larsson, N. G. (2003) Characterization of the mouse genes for mitochondrial transcription factors B1 and B2, Mamm. Genome, 1, 1–6.

    Article  CAS  Google Scholar 

  67. Matsushima, Y., Adan, C., Garesse, R., and Kaguni, L. S. (2005) Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells, J. Biol. Chem., 17, 16815–16820.

    Article  CAS  Google Scholar 

  68. Hensen, F., Cansiz, S., Gerhold, J. M., and Spelbrink, J. N. (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins, Biochimie, 100, 219–226.

    Article  CAS  PubMed  Google Scholar 

  69. Micol, V., Fernandez-Silva, P., and Attardi, G. (1997) Functional analysis of in vivo and in organello footprinting of HeLa cell mitochondrial DNA in relationship to ATP and ethidium bromide effects on transcription, J. Biol. Chem., 30, 18896–18904.

    Article  Google Scholar 

  70. Martin, M., Cho, J., Cesare, A. J., Griffith, J. D., and Attardi, G. (2005) Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis, Cell, 7, 1227–1240.

    Article  CAS  Google Scholar 

  71. Ojala, D., Montoya, J., and Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria, Nature, 5806, 470–474.

    Article  Google Scholar 

  72. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome, Nature, 5806, 457–465.

    Article  Google Scholar 

  73. Gangelhoff, T. A., Mungalachetty, P. S., Nix, J. C., and Churchill, M. E. (2009) Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A, Nucleic Acids Res., 10, 3153–3164.

    Article  CAS  Google Scholar 

  74. Malarkey, C. S., Bestwick, M., Kuhlwilm, J. E., Shadel, G. S., and Churchill, M. E. (2012) Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA, Nucleic Acids Res., 2, 614624.

    Google Scholar 

  75. Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S., and Clayton, D. A. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice, Nat. Genet., 3, 231–236.

    Article  Google Scholar 

  76. Bonawitz, N. D., Clayton, D. A., and Shadel, G. S. (2006) Initiation and beyond: multiple functions of the human mitochondrial transcription machinery, Mol. Cell, 6, 813825.

    Google Scholar 

  77. Gaspari, M., Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2004) The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells, EMBO J., 23, 4606–4614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Yoh, S. M., Cho, H., Pickle, L., Evans, R. M., and Jones, K. A. (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export, Genes Dev., 2, 160–174.

    Article  CAS  Google Scholar 

  79. Minczuk, M., He, J., Duch, A. M., Ettema, T. J., Chlebowski, A., Dzionek, K., Nijtmans, L. G., Huynen, M. A., and Holt, I. J. (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA, Nucleic Acids Res., 10, 4284–4299.

    Article  CAS  Google Scholar 

  80. Steitz, T. A. (2009) The structural changes of T7 RNA polymerase from transcription initiation to elongation, Curr. Opin. Struct. Biol., 6, 683–690.

    Article  CAS  Google Scholar 

  81. Wang, Z., Cotney, J., and Shadel, G. S. (2007) Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression, J. Biol. Chem., 17, 12610–12618.

    Article  CAS  Google Scholar 

  82. Gohil, V. M., Nilsson, R., Belcher-Timme, C. A., Luo, B., Root, D. E., and Mootha, V. K. (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression, J. Biol. Chem., 18, 13742–13747.

    Article  CAS  Google Scholar 

  83. Spahr, H., Samuelsson, T., Hallberg, B. M., and Gustafsson, C. M. (2010) Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acidbinding domain, Biochem. Biophys. Res. Commun., 3, 386390.

    Google Scholar 

  84. Hyvarinen, A. K., Pohjoismaki, J. L., Reyes, A., Wanrooij, S., Yasukawa, T., Karhunen, P. J., Spelbrink, J. N., Holt, I. J., and Jacobs, H. T. (2007) The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA, Nucleic Acids Res., 19, 6458–6474.

    Article  CAS  Google Scholar 

  85. Camasamudram, V., Fang, J. K., and Avadhani, N. G. (2003) Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins, Eur. J. Biochem., 6, 1128–1140.

    Article  CAS  Google Scholar 

  86. McKinney, E. A., and Oliveira, M. T. (2013) Replicating animal mitochondrial DNA, Genet. Mol. Biol., 3, 308–315.

    Article  Google Scholar 

  87. Xu, B., and Clayton, D. A. (1995) A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence, Mol. Cell. Biol., 1, 580–589.

    Article  Google Scholar 

  88. Pham, X. H., Farge, G., Shi, Y., Gaspari, M., Gustafsson, C. M., and Falkenberg, M. (2006) Conserved sequence box II directs transcription termination and primer formation in mitochondria, J. Biol. Chem., 34, 24647–24652.

    Article  CAS  Google Scholar 

  89. Korhonen, J. A., Pham, X. H., Pellegrini, M., and Falkenberg, M. (2004) Reconstitution of a minimal mtDNA replisome in vitro, EMBO J., 12, 2423–2429.

    Article  CAS  Google Scholar 

  90. Robberson, D. L., and Clayton, D. A. (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase-derivatives: displacement replication on a covalently-closed circular template, Proc. Natl. Acad. Sci. USA, 12, 3810–3814.

    Article  Google Scholar 

  91. Clayton, D. A. (2003) Mitochondrial DNA replication: what we know, IUBMB Life, 5, 213–217.

    Article  CAS  Google Scholar 

  92. Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2007) DNA replication and transcription in mammalian mitochondria, Annu. Rev. Biochem., 76, 679–699.

    Article  CAS  PubMed  Google Scholar 

  93. Pomerantz, R. T., and O’Donnell, M. (2008) The replisome uses mRNA as a primer after colliding with RNA polymerase, Nature, 7223, 762–766.

    Article  CAS  Google Scholar 

  94. Fuste, J. M., Wanrooij, S., Jemt, E., Granycome, C. E., Cluett, T. J., Shi, Y., Atanassova, N., Holt, I. J., Gustafsson, C. M., and Falkenberg, M. (2010) Mitochondrial RNA polymerase is needed for activation of the origin of lightstrand DNA replication, Mol. Cell, 1, 67–78.

    Article  CAS  Google Scholar 

  95. Yang, M. Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E., Jacobs, H. T., and Holt, I. J. (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strandasymmetric DNA replication, Cell, 4, 495–505.

    Article  Google Scholar 

  96. Yasukawa, T., Reyes, A., Cluett, T. J., Yang, M. Y., Bowmaker, M., Jacobs, H. T., and Holt, I. J. (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand, EMBO J., 22, 5358–5371.

    Article  CAS  Google Scholar 

  97. Pohjoismaki, J. L., Holmes, J. B., Wood, S. R., Yang, M. Y., Yasukawa, T., Reyes, A., Bailey, L. J., Cluett, T. J., Goffart, S., Willcox, S., Rigby, R. E., Jackson, A. P., Spelbrink, J. N., Griffith, J. D., Crouch, R. J., Jacobs, H. T., and Holt, I. J. (2010) Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid, J. Mol. Biol., 5, 1144–1155.

    Article  CAS  Google Scholar 

  98. Reyes, A., Kazak, L., Wood, S. R., Yasukawa, T., Jacobs, H. T., and Holt, I. J. (2013) Mitochondrial DNA replication proceeds via a “bootlace” mechanism involving the incorporation of processed transcripts, Nucleic Acids Res., 11, 5837–5850.

    Article  CAS  Google Scholar 

  99. Bogenhagen, D. F., and Clayton, D. A. (2003) The mitochondrial DNA replication bubble has not burst, Trends Biochem. Sci., 7, 357–360.

    Article  CAS  Google Scholar 

  100. Holt, I. J., and Jacobs, H. T. (2003) Response: the mitochondrial DNA replication bubble has not burst, Trends Biochem. Sci., 7, 355–356.

    Article  CAS  Google Scholar 

  101. Bogenhagen, D. F., and Clayton, D. A. (2003) Concluding remarks: the mitochondrial DNA replication bubble has not burst, Trends Biochem. Sci., 8, 404–405.

    Article  CAS  Google Scholar 

  102. Joers, P., and Jacobs, H. T. (2013) Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled θ mechanism, PLoS One, 1, e53249.

    Article  CAS  Google Scholar 

  103. Holt, I. J., Lorimer, H. E., and Jacobs, H. T. (2000) Coupled leadingand lagging-strand synthesis of mammalian mitochondrial DNA, Cell, 5, 515–524.

    Article  Google Scholar 

  104. Holt, I. J. (2009) Mitochondrial DNA replication and repair: all a flap, Trends Biochem. Sci., 7, 358–365.

    Article  CAS  Google Scholar 

  105. Bowmaker, M., Yang, M. Y., Yasukawa, T., Reyes, A., Jacobs, H. T., Huberman, J. A., and Holt, I. J. (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone, J. Biol. Chem., 51, 5096150969.

    Google Scholar 

  106. Fish, J., Raule, N., and Attardi, G. (2004) Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis, Science, 5704, 2098–2101.

    Article  CAS  Google Scholar 

  107. St. John, J. C. (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility, Cell Tissue Res., 3, 795–808.

    Article  CAS  Google Scholar 

  108. Howell, N. (1996) Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics, Am. J. Hum. Genet., 4, 749–755.

    Google Scholar 

  109. Slupphaug, G., Markussen, F. H., Olsen, L. C., Aasland, R., Aarsaether, N., Bakke, O., Krokan, H. E., and Helland, D. E. (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene, Nucleic Acids Res., 11, 2579–2584.

    Article  Google Scholar 

  110. Nilsen, H., Otterlei, M., Haug, T., Solum, K., Nagelhus, T. A., Skorpen, F., and Krokan, H. E. (1997) Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene, Nucleic Acids Res., 4, 750755.

    Google Scholar 

  111. Nakabeppu, Y. (2001) Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage, Prog. Nucleic Acid Res. Mol. Biol., 68, 75–94.

    Article  CAS  PubMed  Google Scholar 

  112. Demple, B., and Sung, J. S. (2005) Molecular and biological roles of Ape1 protein in mammalian base excision repair, DNA Repair (Amsterdam), 12, 1442–1449.

    Article  CAS  Google Scholar 

  113. Ikeda, S., Kohmoto, T., Tabata, R., and Seki, Y. (2002) Differential intracellular localization of the human and mouse endonuclease III homologs and analysis of the sorting signals, DNA Repair (Amsterdam), 10, 847–854.

    Article  Google Scholar 

  114. Demple, B., and Harrison, L. (1994) Repair of oxidative damage to DNA: enzymology and biology, Annu. Rev. Biochem., 63, 915–948.

    Article  CAS  PubMed  Google Scholar 

  115. Dou, H., Theriot, C. A., Das, A., Hegde, M. L., Matsumoto, Y., Boldogh, I., Hazra, T. K., Bhakat, K. K., and Mitra, S. (2008) Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for replication-associated repair of oxidized bases in mammalian genomes, J. Biol. Chem., 6, 31303140.

    Google Scholar 

  116. Tahbaz, N., Subedi, S., and Weinfeld, M. (2012) Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair, Nucleic Acids Res., 8, 3484–3495.

    Article  CAS  Google Scholar 

  117. Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H., and Copeland, W. C. (1998) Identification of 5'deoxyribose phosphate lyase activity in human DNA polymerase ? and its role in mitochondrial base excision repair in vitro, Proc. Natl. Acad. Sci. USA, 21, 12244–12248.

    Article  Google Scholar 

  118. Pinz, K. G., and Bogenhagen, D. F. (2006) The influence of the DNA polymerase γ accessory subunit on base excision repair by the catalytic subunit, DNA Repair (Amsterdam), 1, 121–128.

    Article  CAS  Google Scholar 

  119. Kazak, L., Reyes, A., and Holt, I. J. (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact, Nat. Rev. Mol. Cell Biol., 10, 659–671.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Mazunin.

Additional information

Original Russian Text © I. O. Mazunin, S. A. Levitskii, M. V. Patrushev, P. A. Kamenski, 2015, published in Biokhimiya, 2015, Vol. 80, No. 11, pp. 1628-1640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazunin, I.O., Levitskii, S.A., Patrushev, M.V. et al. Mitochondrial matrix processes. Biochemistry Moscow 80, 1418–1428 (2015). https://doi.org/10.1134/S0006297915110036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915110036

Keywords

Navigation