Skip to main content
Log in

Activity of redox enzymes in the thallus of Anthoceros natalensis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Anthocerotophyta (hornworts) belong to a group of ancient nonvascular plants and originate from a common ancestor with contemporary vascular plants. Hornworts represent a unique model for investigating mechanisms of formation of stress resistance in higher plants due to their high tolerance to the action of adverse environmental factors. In this work, we demonstrate that the thallus of Anthoceros natalensis exhibits high redox activity changing under stress. Dehydration of the thallus is accompanied by the decrease in activities of intracellular peroxidases, DOPA-peroxidases, and tyrosinases, while catalase activity increases. Subsequent rehydration results in the increase in peroxidase and catalase activities. Kinetic features of peroxidases and tyrosinases were characterized as well as the peroxidase isoenzyme composition of different fractions of the hornwort cell wall proteins. It was shown that the hornwort peroxidases are functionally similar to peroxidases of higher vascular plants including their ability to form superoxide anion-radical. The biochemical mechanism was elucidated, supporting the possible participation of peroxidases in the formation of reactive oxygen species (ROS) via substrate—substrate interactions in the hornwort thallus. It has been suggested that the ROS formation by peroxidases is an evolutionarily ancient process that emerged as a protective mechanism for enhancing adaptive responses of higher land plants and their adaptation to changing environmental conditions and successful colonization of various ecological niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CW:

cell wall

DOPA:

3,4-dihydroxyphenylalanine

ECS:

extracellular solution

O2 :

superoxide anion-radical

PIB:

post-infiltration buffer

ROS:

reactive oxygen species

SOD:

superoxide dismutase

XTT:

2,3-bis-(2-methoxy-4nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

References

  1. Villarreal, J. C., Cargill, D. C., Söderström, L., Hagborg, A., and Renzaglia, K. S. (2010) A synthesis of hornwort diversity: patterns, causes and future work, Phytotaxa, 9, 150–166.

    Google Scholar 

  2. Asakawa, Y. (1995) in Progress in the Chemistry of Organic Natural Products (Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., and Tamm, Ch., eds.) Vol. 65, Springer, Vienna, pp. 1–562.

    Article  Google Scholar 

  3. Troitsky, A. V., Ignatov, M. S., Bobrova, V. K., and Milyutina, I. A. (2007) Contribution of genosystematics to current concepts of phylogeny and classification of bryophytes, Biochemistry (Moscow), 72, 1368–1376.

    Article  CAS  Google Scholar 

  4. Chang, Y., and Graham, S. W. (2011) Inferring the higherorder phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set, Am. J. Bot., 98, 839–849.

    Article  PubMed  Google Scholar 

  5. Qiu, Y.-L., Li, L., Wang, B., Chen, Z., Knoop, V., Groth Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa, C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., Quandt, D., and Davis, C. C. (2006) The deepest divergences in land plants inferred from phylogenomic evidence, PNAS, 103, 15511–15516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Adams, D. G., and Duggan, P. S. (2008) Cyanobacteria–bryophyte symbioses, J. Exp. Bot., 59, 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  7. Wood, A. J. (2007) The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses, Bryologist, 110, 163–177.

    Article  Google Scholar 

  8. Minibayeva, F., and Beckett, R. P. (2001) High rates of extracellular superoxide production in bryophytes and lichens, and an oxidative burst in response to rehydration following desiccation, New Phytologist, 152, 333–341.

    Article  CAS  Google Scholar 

  9. Chasov, A. V., and Minibayeva, F. V. (2009) Effect of exogenous phenols on superoxide production by extracellular peroxidase from wheat seedling roots, Biochemistry (Moscow), 74, 766–774.

    Article  CAS  Google Scholar 

  10. Minibayeva, F., Kolesnikov, O., Chasov, A., Beckett, R. P., Lüthje, S., Vylegzhanina, N., Buck, F., and Böttger, M. (2009) Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species, Plant Cell Environ., 32, 497–508.

    Article  CAS  PubMed  Google Scholar 

  11. Passardi, F., Longet, D., Penel, C., and Dunand, C. (2004) The class III peroxidase multigenic family in rice and its evolution in land plants, Phytochemistry, 65, 1879–1893.

    Article  CAS  PubMed  Google Scholar 

  12. Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., and Pedreño, M. A. (2009) Class III peroxidases in plant defense reactions, J. Exp. Bot., 60, 377–390.

    Article  CAS  PubMed  Google Scholar 

  13. Mathé, C., Barre, A., Jourda, C., and Dunand, C. (2010) Evolution and expression of class III peroxidases, Arch. Biochem. Biophys., 500, 58–65.

    Article  PubMed  Google Scholar 

  14. Mayaba, N., and Beckett, R. P. (2003) Increased activities of superoxide dismutase and catalase are not the mechanism of desiccation tolerance induced by hardening in the moss Atrichum androgynum, J. Bryol., 25, 281–286.

    Article  Google Scholar 

  15. Li, J. L., Sulaiman, M., Beckett, R. P., and Minibayeva, F. V. (2010) Cell wall peroxidases in the liverwort Dumortiera hirsuta are responsible for extracellular superoxide production, and can display tyrosinase activity, Physiol. Plant., 138, 474–484.

    Article  CAS  PubMed  Google Scholar 

  16. Chasov, A. V., and Minibayeva, F. V. (2014) Methodological approaches for studying apoplastic redox activity: 1. Mechanisms of peroxidase release, Russ. J. Plant Physiol., 61, 556–563.

    Article  CAS  Google Scholar 

  17. Chasov, A. V., and Minibayeva, F. V. (2014) Methodological approaches for studying apoplastic redox activity: 2. Regulation of peroxidase activity, Russ. J. Plant Physiol., 61, 626–633.

    Article  CAS  Google Scholar 

  18. Sutherland, M. W., and Learmonth, B. A. (1997) The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase, Free Rad. RPS, 27, 283–289.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Hirata, T., Ashida, Y., Mori, H., Yoshinaga, D., and Goad, L. J. (2000) A 37-kDa peroxidase secreted from liverworts in response to chemical stress, Phytochemistry, 55, 197–202.

    Article  CAS  PubMed  Google Scholar 

  21. Lehtonen, M. T., Akita, M., Kalkkinen, N., Ahola-Iivarinen, E., Rönnholm, G., Somervuo, P., Thelander, M., and Valkonen, J. P. (2009) Quickly-released peroxidase of moss in defense against fungal invaders, New Phytol., 183, 432–443.

    Article  CAS  PubMed  Google Scholar 

  22. Van Loon, L. C., Rep, M., and Pieterse, C. M. J. (2006) Significance of inducible defence-related proteins in infected plants, Ann. Rev. Phytopathol., 44, 135–162.

    Article  Google Scholar 

  23. Pshenichnov, E., Khashimova, N., Akhunov, A., Golubenko, Z., and Stipanovic, R. D. (2011) Participation of chitin-binding peroxidase isoforms in the wilt pathogenesis of cotton, AJPS, 2, 43–49.

    Article  CAS  Google Scholar 

  24. O’Brien, J. A., Daudi, A., Butt, V. S., and Bolwell, G. P. (2012) Reactive oxygen species and their role in plant defense and cell wall metabolism, Planta, 236, 765–779.

    Article  PubMed  Google Scholar 

  25. Tognolli, M., Penel, C., Greppin, H., and Simon, P. (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana, Gene, 288, 129–138.

    Article  CAS  PubMed  Google Scholar 

  26. Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C., and Minibayeva, F. (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system, J. Exp. Bot., 53, 1367–1376.

    Article  CAS  PubMed  Google Scholar 

  27. Lehtonen, M. T., Akita, M., Frank, W., Reski, R., and Valkonen, J. P. T. (2012) Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor, MPMI, 25, 363–371.

    Article  CAS  PubMed  Google Scholar 

  28. Tarchevskii, I. A. (2001) Metabolism of Plants under Stress [in Russian], Fen, Kazan.

    Google Scholar 

  29. Roach, T., Colville, L., Beckett, R. P., Minibayeva, F. V., Havaux, M., and Kranner, I. (2015) A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings, Phytochemistry, 112, 130–138.

    Article  CAS  PubMed  Google Scholar 

  30. Mayer, A. M. (2006) Polyphenol oxidases in plants and fungi: going places? A review, Phytochemistry, 67, 2318–2331.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, B. R., Kim, K. Y., Jung, W. J., Avice, J. C., Ourry, A., and Kim, T. H. (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.), J. Exp. Bot., 58, 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Q., Yang, L., Ahmad, P., Wan, X., and Hu, X. (2011) Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation, Planta, 233, 583–592.

    Article  CAS  PubMed  Google Scholar 

  33. Halliwell, B. (1978) Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols, Planta, 140, 81–88.

    Article  CAS  PubMed  Google Scholar 

  34. Lebedeva, O. V., and Ugarova, N. N. (1997) Steady-state kinetics of NADH oxidation by hydrogen peroxide in the presence of horseradish peroxidase, Biochemistry (Moscow), 62, 212–216.

    CAS  Google Scholar 

  35. Lebedeva, O. V., and Ugarova, N. N. (1996) Mechanism of peroxidase-catalyzed oxidation. Substrate–substrate activation in horseradish peroxidase-catalyzed reactions, Russ. Chem. Bull., 45, 18–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chasov.

Additional information

Original Russian Text © A. V. Chasov, R. P. Beckett, F. V. Minibayeva, 2015, published in Biokhimiya, 2015, Vol. 80, No. 9, pp. 1391–1404.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-017, June 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasov, A.V., Beckett, R.P. & Minibayeva, F.V. Activity of redox enzymes in the thallus of Anthoceros natalensis . Biochemistry Moscow 80, 1157–1168 (2015). https://doi.org/10.1134/S0006297915090060

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915090060

Key words

Navigation