Skip to main content
Log in

New data on programmed aging — slow phenoptosis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

It seems striking that complex multicellular organisms, having accomplished an obviously marvelous feat of morphogenesis, should not be able to solve a much simpler task of maintaining what has been already achieved.

G. Williams

Abstract

This review summarizes the latest data on biochemistry and physiology of living organisms. These data suggest that aging, i.e. coordinated age-dependent weakening of many vital functions leading to gradual increase in the probability of dying, is not common to all organisms. Some species have been described whose probability of death does not depend on age or even decreases with age, this being accompanied by constant or increasing fertility. In the case of the naked mole rat (a non-aging mammal), a mechanism has been identified that protects this animal from cancer and the most common age-related diseases. The high molecular weight polysaccharide hyaluronan, a linear polymer composed of multiple repeated disaccharide of glucuronic acid and glucosamine, plays the key role in this mechanism. Hyaluronan is accumulated in the intercellular spaces in the organs and tissues of the naked mole rat. This polysaccharide provides early contact inhibition of cell division (anti-cancer effect). In addition, hyaluronan prevents the development of certain types of apoptosis, in particular, those induced by reactive oxygen species (ROS) (geroprotective effect preventing ROS-induced decrease in cellularity in the organs and tissues of aging organisms). Extraordinary longevity of the naked mole rat (over 30 years, which is long for a rodent the size of a mouse) is connected to its eusocial lifestyle, when only the “queen” and its few “husbands” breed, while the huge army of non-breeding “subordinates” provide the “royal family” with protection from predators, food, and construction and maintenance of an underground labyrinth size of a football field. This way of life removes the pressure of natural selection from the “family” and makes aging — the program that is counterproductive for the individual but increases “evolvability” of its offspring — unnecessary. The example of the naked mole rat demonstrates the optional character of the aging program for the organism. Many facts indicating that aging can be regulated by an organism provide another argument in favor of optionality of aging. Cases have been described when aging as a program useful for the evolution of offspring but counterproductive for the parental individual slows under conditions that threaten the very existence of the individual. These conditions include food restriction (the threat of death from starvation), heavy muscular work, decrease or increase in the environmental temperature, small amounts of poisons (including ROS; here we speak about the paradoxical geroprotective effect of the low doses of prooxidants that inhibit apoptosis). On the other hand, aging can be inhibited (and maybe even cancelled) artificially. This can be done by turning off the genes encoding the proteins participating in the aging program, such as FAT10, p66shc, and some others. In addition, the gene of the antioxidant enzyme catalase can be addressed into mitochondria, where it will split mitochondrial hydrogen peroxide, the level of which increases with age. However, today the simplest way to slow down the aging program is the use of mitochondria-targeted low molecular weight antioxidant compounds of plastoquinonyl decyltriphenylphosphonium-type (SkQ1), which prolong the life of animals, plants, and fungi and inhibit the development of many age-related diseases and symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mROS:

mitochondrial reactive oxygen species

ROS:

reactive oxygen species

SkQ:

derivatives of plastoquinone and penetrating cations (Sk+)

SkQ1:

plastoquinonyl decyltriphenylphosphonium

References

  1. Williams, G. C. (1957) Pleiotropy, natural-selection, and the evolution of senescence, Evolution, 11, 398–411.

    Google Scholar 

  2. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  3. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  4. Skulachev, V. P. (2003) Aging and programmed death phenomena, in Topics in Current Genetics, Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer Verlag, Berlin-Heidelberg, pp. 192–237.

    Google Scholar 

  5. Skulachev, V. P., and Longo, V. D. (2005) Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann. N. Y. Acad. Sci., 1057, 145–164.

    PubMed  CAS  Google Scholar 

  6. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.

    CAS  Google Scholar 

  7. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.

    CAS  Google Scholar 

  8. Skulachev, V. P., Skulachev, M. V., and Feniuk, B. A. (2013) Life without Aging [in Russian], EKSMO, Moscow.

    Google Scholar 

  9. Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintanascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Tian, X., Azpurua, J., Hine, C., Vaidya, A., Myakishev-Rempel, M., Ablaeva, J., Mao, Z., Nevo, E., Gorbunova, V., and Seluanov, A. (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat, Nature, 499, 346–349.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Seluanov, A., Hine, C., Azpurua, J., Feigenson, M., Bozzella, M., Mao, Z., Catania, K. C., and Gorbunova, V. (2009) Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat, Proc. Natl. Acad. Sci. USA, 106, 19352–19357.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Pletjushkina, O. Y., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Y., Domnina, L. V., Vyssokikh, M. Y., Pustovidko, A. V., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2005) Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion, Cell Death Differ., 12, 1442–1444.

    PubMed  CAS  Google Scholar 

  13. Pletjushkina, O. Yu., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Yu, Domnina, L. V., Vyssokikh, M. Yu., Pustovidko, A. V., Alekseevski, A. V., Alekseevski, D. A., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2006) Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal, Biochemistry (Moscow), 71, 60–67.

    CAS  Google Scholar 

  14. Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms, Aging Cell, 6, 607–618.

    PubMed  CAS  Google Scholar 

  15. Azpurua, J., Ke, Z., Chen, I. X., Zhang, Q., Ermolenko, D. N., Zhang, Z. D., Gorbunova, V., and Seluanov, A. (2013) Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage, Proc. Natl. Acad. Sci. USA, 110, 17350–17355.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Brunet-Rossinni, A. K. (2004) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals, Mech. Ageing Dev., 125, 11–20.

    PubMed  CAS  Google Scholar 

  17. Brunet-Rossinni, A. K., and Austad, S. N. (2004) Ageing studies on bats: a review, Biogerontology, 5, 211–222.

    PubMed  CAS  Google Scholar 

  18. Sohal, R. S., Ku, H. H., and Agarwal, S. (1993) Biochemical correlates of longevity in two closely related rodent species, Biochem. Biophys. Res. Commun., 196, 7–11.

    PubMed  CAS  Google Scholar 

  19. Csiszar, A., Labinskyy, N., Zhao, X., Hu, F., Serpillon, S., Huang, Z., Ballabh, P., Levy, R. J., Hintze, T. H., Wolin, M. S., Austad, S. N., Podlutsky, A., and Ungvari, Z. (2007) Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity, Aging Cell, 6, 783–797.

    PubMed  CAS  Google Scholar 

  20. Sohal, R. S., Ferguson, M., Sohal, B. H., and Forster, M. J. (2009) Life span extension in mice by food restriction depends on an energy imbalance, J. Nutr., 139, 533–539.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Shi, Y., Pulliam, D. A., Liu, Y., Hamilton, R. T., Jernigan, A. L., Bhattacharya, A., Sloane, L. B., Qi, W., Chaudhuri, A., Buffenstein, R., Ungvari, Z., Austad, S. N., and Van Remmen, H. (2013) Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus, Am. J. Physiol., 304, R343-355.

  22. Csiszar, A., Labinskyy, N., Orosz, Z., Xiangmin, Z., Buffenstein, R., and Ungvari, Z. (2007) Vascular aging in the longest-living rodent, the naked mole rat, Am. J. Physiol. Heart Circ. Physiol., 293, H919–927.

    PubMed  CAS  Google Scholar 

  23. Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.

    Google Scholar 

  24. Finch, C. E. (2009) Update on slow aging and negligible senescence — a mini-review, Gerontology, 55, 307–313.

    PubMed  Google Scholar 

  25. Delaney, M. A., Nagy, L., Kinsel, M. J., and Treuting, P. M. (2013) Spontaneous histological lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population, Vet. Pathol., 50, 607–621.

    PubMed  CAS  Google Scholar 

  26. Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouve, C., Besson, D., Chastel, O., and Weimerskirch, H. (2010) Patterns of aging in the long-lived wandering albatross, Proc. Natl. Acad. Sci. USA, 14, 6370–6375.

    Google Scholar 

  27. Buffenstein, R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol. A. Biol. Sci. Med. Sci., 60, 1369–1377.

    PubMed  Google Scholar 

  28. Szilard, L. (1959) On the nature of the aging process, Proc. Natl. Acad. Sci. USA, 45, 30–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Ciechanover, A. (2012) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Neuro-Degenerat. Dis., 10, 7–22.

    CAS  Google Scholar 

  30. Fredriksson, A., Johansson Krogh, E., Hernebring, M., Pettersson, E., Javadi, A., Almstedt, A., and Nystrom, T. (2012) Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanogaster, Aging Cell, 11, 634–643.

    PubMed  CAS  Google Scholar 

  31. Nystrom, T. (2005) Role of oxidative carbonylation in protein quality control and senescence, EMBO J., 24, 1311–1317.

    PubMed  PubMed Central  Google Scholar 

  32. Koga, H., Kaushik, S., and Cuervo, A. M. (2011) Protein homeostasis and aging: the importance of exquisite quality control, Ageing Res. Rev., 10, 205–215.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Friguet, B., Bulteau, A. L., Chondrogianni, N., Conconi, M., and Petropoulos, I. (2000) Protein degradation by the proteasome and its implications in aging, Ann. N. Y. Acad. Sci., 908, 143–154.

    PubMed  CAS  Google Scholar 

  34. Shringarpure, R., and Davies, K. J. A. (2002) Protein turnover by the proteasome in aging and disease, Free Rad. Biol. Med., 32, 1084–1089.

    PubMed  CAS  Google Scholar 

  35. Sitte, N., Merker, K., Von Zglinicki, T., Grune, T., and Davies, K. J. A. (2000) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I — effects of proliferative senescence, FASEB J., 14, 2495–2502.

    PubMed  CAS  Google Scholar 

  36. Jahngen, J. H., Lipman, R. D., Eisenhauer, D. A., Jahngen, E. G. E., and Taylor, A. (1990) Aging and cellular maturation cause changes in ubiquitin eye lens protein conjugates, Arch. Biochem. Biophys., 276, 32–37.

    PubMed  CAS  Google Scholar 

  37. Ruotolo, R., Grassi, F., Percudani, R., Rivetti, C., Martorana, D., Maraini, G., and Ottonello, S. (2003) Gene expression profiling in human age-related nuclear cataract, Mol. Vision, 9, 538–548.

    CAS  Google Scholar 

  38. Hawse, J. R., Hejtmancik, J. F., Horwitz, J., and Kantorow, M. (2004) Identification and functional clustering of global gene expression differences between age-related cataract and clear human lenses and aged human lenses, Exp. Eye Res., 79, 935–940.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Tsirigotis, M., Zhang, M., Chiu, R. K., Wouters, B. G., and Gray, D. A. (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents, J. Biol. Chem., 276, 46073–46078.

    PubMed  CAS  Google Scholar 

  40. Engelberg-Kulka, H., Yelin, I., and Kolodkin-Gal, I. (2009) Activation of a built-in bacterial programmed cell death system as a novel mechanism of action of some antibiotics, Commun. Integr. Biol., 2, 211–212.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell Biol., 168, 257–269.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell, FEBS Lett., 397, 7–10.

    PubMed  CAS  Google Scholar 

  43. Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214–237.

    PubMed  CAS  Google Scholar 

  44. Kashiwagi, A., Hanada, H., Yabuki, M., Kanno, T., Ishisaka, R., Sasaki, J., Inoue, M., and Utsumi, K. (1999) Thyroxin enhancement and the role of reactive oxygen species in tadpole tail apoptosis, Free Rad. Biol. Med., 26, 1001–1009.

    PubMed  CAS  Google Scholar 

  45. Erjavec, N., and Nystrom, T. (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 104, 10877–10881.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Osiewacz, H. D. (2003) Aging and mitochondrial dysfunction in the filamentous fungus Podospora anserina, in Topics in Current Genetics (Nystrom, T., and Osiewacz, H. D., eds.) Springer Verlag, Berlin-Heidelberg, pp. 17–38.

    Google Scholar 

  47. Munne-Bosch, S., and Alegre, L. (2002) Plant aging increases oxidative stress in chloroplasts, Planta, 214, 608–615.

    PubMed  CAS  Google Scholar 

  48. Cocheme, H. M., Quin, C., McQuaker, S. J., Cabreiro, F., Logan, A., Prime, T. A., Abakumova, I., Patel, J. V., Fearnley, I. M., James, A. M., Porteous, C. M., Smith, R. A., Saeed, S., Carre, J. E., Singer, M., Gems, D., Hartley, R. C., Partridge, L., and Murphy, M. P. (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix, Cell Metab., 13, 340–350.

    PubMed  CAS  Google Scholar 

  49. Logan, A., Shabalina, I. G., Prime, T. A., Rogatti, S., Kalinovich, A. V., Hartley, R. C., Budd, R. C., Cannon, B., and Murphy, M. P. (2014) In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice, Aging Cell, doi: 10.1111/acel.12212.

    Google Scholar 

  50. Blagosklonny, M. V. (2008) Aging: ROS or TOR, Cell Cycle, 7, 3344–3354.

    PubMed  CAS  Google Scholar 

  51. Kirkwood, T. B., and Kowald, A. (2012) The free-radical theory of ageing — older, wiser and still alive: modeling positional effects of the primary targets of ROS reveals new support, BioEssays, 34, 692–700.

    PubMed  CAS  Google Scholar 

  52. Blagosklonny, M. V. (2013) Aging is not programmed genetic pseudo-program is a shadow of developmental growth, Cell Cycle, 12, 3736–3742.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Ahlfors, R., Lang, S., Overmyer, K., Jaspers, P., Brosche, M., Tauriainen, A., Kollist, H., Tuominen, H., Belles-Boix, E., Piippo, M., Inze, D., Palva, E. T., and Kangasjarvi, J. (2004) Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses, Plant Cell, 16, 1925–1937.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Gladyshev, V. N. (2014) The free radical theory of aging is dead. Long live the damage theory! Antiox. Redox. Signal., 20, 727–731.

    CAS  Google Scholar 

  55. Love, N. R., Chen, Y., Ishibashi, S., Kritsiligkou, P., Lea, R., Koh, Y., Gallop, J. L., Dorey, K., and Amaya, E. (2012) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration, Nature Cell Biol., 15, 222–228.

    Google Scholar 

  56. Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species, Free Rad. Biol. Med., 15, 621–627.

    PubMed  CAS  Google Scholar 

  57. Barja, G. (1998) Mitochondrial free radical production and aging in mammals and birds, Ann. N. Y. Acad. Sci., 854, 224–238.

    PubMed  CAS  Google Scholar 

  58. Barja, G., and Herrero, A. (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals, FASEB J., 14, 312–318.

    PubMed  CAS  Google Scholar 

  59. Capel, F., Rimbert, V., Lioger, D., Diot, A., Rousset, P., Mirand, P. P., Boirie, Y., Morio, B., and Mosoni, L. (2005) Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved, Mech. Ageing Dev., 126, 505–511.

    PubMed  CAS  Google Scholar 

  60. Qiu, X., Brown, K., Hirschey, M. D., Verdin, E., and Chen, D. (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation, Cell Metab., 12, 662–667.

    PubMed  CAS  Google Scholar 

  61. Someya, S., Yu, W., Hallows, W. C., Xu, J., Vann, J. M., Leeuwenburgh, C., Tanokura, M., Denu, J. M., and Prolla, T. A. (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction, Cell, 143, 802–812.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., Jiang, H., Kim, H. S., Flynn, C. R., Hill, S., Hayes McDonald, W., Olivier, A. K., Spitz, D. R., and Gius, D. (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress, Mol. Cell, 40, 893–904.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., Liu, Y., Zhang, D., Scadden, D. T., and Chen, D. (2013) SIRT3 reverses aging-associated degeneration, Cell Rep., 3, 319–327.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C., and Rabinovitch, P. S. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria, Science, 308, 1909–1911.

    PubMed  CAS  Google Scholar 

  65. Lee, H. Y., Choi, C. S., Birkenfeld, A. L., Alves, T. C., Jornayvaz, F. R., Jurczak, M. J., Zhang, D., Woo, D. K., Shadel, G. S., Ladiges, W., Rabinovitch, P. S., Santos, J. H., Petersen, K. F., Samuel, V. T., and Shulman, G. I. (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance, Cell Metab., 12, 668–674.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Dai, D. F., and Rabinovitch, P. S. (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress, Trends Cardiovasc. Med., 19, 213–220.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Treuting, P. M., Linford, N. J., Knoblaugh, S. E., Emond, M. J., Morton, J. F., Martin, G. M., Rabinovitch, P. S., and Ladiges, W. C. (2008) Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria, J. Gerontol. Biol., 63, 813–824.

    Google Scholar 

  68. Dai, D. F., Chen, T., Wanagat, J., Laflamme, M., Marcinek, D. J., Emond, M. J., Ngo, C. P., Prolla, T. A., and Rabinovitch, P. S. (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria, Aging Cell, 9, 536–544.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals, Nature, 402, 309–313.

    PubMed  CAS  Google Scholar 

  70. Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., Milia, E., Padura, I. M., Raker, V. A., Maccarana, M., Petronilli, V., Minucci, S., Bernardi, P., Lanfrancone, L., and Pelicci, P. G. (2002) A p53-p66Shc signaling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis, Oncogene, 21, 3872–3878.

    PubMed  CAS  Google Scholar 

  71. Napoli, C., Martin-Padura, I., de Nigris, F., Giorgio, M., Mansueto, G., Somma, P., Condorelli, M., Sica, G., De Rosa, G., and Pelicci, P. (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet, Proc. Natl. Acad. Sci. USA, 100, 2112–2116.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Giorgio, M., Migliaccio, E., and Paolucci, D. (2004) p66shc Is a Signal Transduction Redox Enzyme, 13th EBEC Meet. Abstr., 27.

  73. Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Saprunova, V. V., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1329–1342.

    CAS  Google Scholar 

  74. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

    PubMed  CAS  Google Scholar 

  75. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.

    PubMed  CAS  Google Scholar 

  76. Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents, Aging (Albany NY), 3, 1110–1119.

    CAS  Google Scholar 

  77. Skulachev, V. P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress, Biochem. Biophys. Res. Commun., 441, 275–279.

    PubMed  CAS  Google Scholar 

  78. Petrosillo, G., Matera, M., Casanova, G., Ruggiero, F. M., and Paradies, G. (2008) Mitochondrial dysfunction in rat brain with aging. Involvement of complex I, reactive oxygen species and cardiolipin, Neurochem. Int., 53, 126–131.

    PubMed  CAS  Google Scholar 

  79. Paradies, G., Petrosillo, G., Paradies, V., and Ruggiero, F. M. (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging, Free Rad. Biol. Med., 48, 1286–1295.

    PubMed  CAS  Google Scholar 

  80. Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.

    PubMed  CAS  Google Scholar 

  81. Kagan, V. E., Borisenko, G. G., Tyurina, Y. Y., Tyurin, V. A., Jiang, J. F., Potapovich, A. I., Kini, V., Amoscato, A. A., and Fujii, Y. (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine, Free Rad. Biol. Med., 37, 1963–1985.

    PubMed  CAS  Google Scholar 

  82. Kagan, V. E., Tyurin, V. A., Jiang, J. F., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, M. M., Di, P., Svistunenko, D. A., Kurnikov, I. V., and Borisenko, G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nature Chem. Biol., 1, 223–232.

    CAS  Google Scholar 

  83. Pamplona, R., Portero-Otin, M., Riba, D., Ruiz, C., Prat, J., Bellmunt, M. J., and Barja, G. (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals, J. Lipid Res., 39, 1989–1994.

    PubMed  CAS  Google Scholar 

  84. Barja, G. (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts, Antioxid. Redox. Signal., 19, 1420–1445.

    PubMed  CAS  Google Scholar 

  85. Remolina, S. C., and Hughes, K. A. (2008) Evolution and mechanisms of long life and high fertility in queen honey bees, Age (Dordr.), 30, 177–185.

    Google Scholar 

  86. Haddad, L. S., Kelbert, L., and Hulbert, A. J. (2007) Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes, Exp. Gerontol., 42, 601–609.

    PubMed  CAS  Google Scholar 

  87. Corona, M., Hughes, K. A., Weaver, D. B., and Robinson, G. E. (2005) Gene expression patterns associated with queen honeybee longevity, Mech. Ageing Dev., 126, 1230–1238.

    PubMed  CAS  Google Scholar 

  88. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med., 192, 1001–1014.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana, Nat. Genet., 40, 1489–1492.

    PubMed  CAS  Google Scholar 

  90. Lens, F., Smets, E., and Melzer, S. (2012) Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness, New Phytol., 193, 12–17.

    PubMed  Google Scholar 

  91. Wodinsky, J. (1977) Hormonal inhibition of feeding and death in octopus: control by optic gland secretion, Science, 198, 948–951.

    PubMed  CAS  Google Scholar 

  92. Bradley, A. J., McDonald, I. R., and Lee, A. K. (1980) Stress and mortality in a small marsupial (Antechinus stuartii Macleay), Gen. Comp. Endocrinol., 40, 188–200.

    PubMed  CAS  Google Scholar 

  93. Mitteldorf, J., and Sagan, D. (2014) Suicide Genes, MacMillan Press, in press.

    Google Scholar 

  94. Skulachev, V. P. (2005) Ageing as atavistic program which can be cancelled, Vestnik RAN, 75, 831–843.

    Google Scholar 

  95. Austad, S. N. (1997) Why We Age? John Willey & Sons, New York.

    Google Scholar 

  96. Maldonado, T. A., Jones, R. E., and Norris, D. O. (2000) Distribution of beta-amyloid and amyloid precursor protein in the brain of spawning (senescent) salmon: a natural, brain-aging model, Brain Res., 858, 237–251.

    PubMed  CAS  Google Scholar 

  97. Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) Intraneuronal amyloid precursor protein (APP) and appearance of extracellular beta-amyloid peptide (abeta) in the brain of aging kokanee salmon, J. Neurobiol., 53, 11–20.

    PubMed  CAS  Google Scholar 

  98. Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) Timing of neurodegeneration and beta-amyloid (Abeta) peptide deposition in the brain of aging kokanee salmon, J. Neurobiol., 53, 21–35.

    PubMed  CAS  Google Scholar 

  99. Bredenkamp, N., Nowell, C. S., and Blackburn, C. C. (2014) Regeneration of the aged thymus by a single transcription factor, Development, 141, 1627–1637.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Canaan, A., DeFuria, J., Perelman, E., Schultz, V., Seay, M., Tuck, D., Flavell, R. A., Snyder, M. P., Obin, M. S., and Weissman, S. M. (2014) Extended lifespan and reduced adiposity in mice lacking the FAT10 gene, Proc. Natl. Acad. Sci. USA, 111, 5313–5318.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Ren, J., Wang, Y., Gao, Y., Mehta, S. B., and Lee, C. G. (2011) FAT10 mediates the effect of TNF-alpha in inducing chromosomal instability, J. Cell Sci., 124, 3665–3675.

    PubMed  CAS  Google Scholar 

  102. Merbl, Y., Refour, P., Patel, H., Springer, M., and Kirschner, M. W. (2013) Profiling of ubiquitin-like modifications reveals features of mitotic control, Cell, 152, 1160–1172.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Gao, Y., Theng, S. S., Zhuo, J., Teo, W. B., Ren, J., and Lee, C. G. (2014) FAT10, an ubiquitin-like protein, confers malignant properties in non-tumorigenic and tumorigenic cells, Carcinogenesis, 35, 923–934.

    PubMed  CAS  Google Scholar 

  104. Liu, Y. C., Pan, J., Zhang, C., Fan, W., Collinge, M., Bender, J. R., and Weissman, S. M. (1999) A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2, Proc. Natl. Acad. Sci. USA, 96, 4313–4318.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Hipp, M. S. (2005) NUB1L and FAT10, two ubiquitin-like proteins involved in protein degradation: Thesis, Universitaet Konstanz.

    Google Scholar 

  106. Maryanovich, M., and Gross, A. (2013) A ROS rheostat for cell fate regulation, Trends Cell. Biol., 23, 129–134.

    PubMed  CAS  Google Scholar 

  107. Sommer, S. S. (1994) Does cancer kill the individual and save the species? Human Mutation, 3, 166–169.

    PubMed  CAS  Google Scholar 

  108. Manskikh, V. N. (2004) Essays on Evolutionary Oncology [in Russian], SibGMU, Tomsk.

    Google Scholar 

  109. Manskikh, V. N. (2008) Hypothesis: phagocytosis of aberrant cells protects long-loved vertebrate species from tumors, Uspekhi Gerontol., 21, 27–33.

    CAS  Google Scholar 

  110. Lichtenstein, A. V. (2005) Cancer as a programmed death of an organism, Biochemistry (Moscow), 70, 1055–1064.

    CAS  Google Scholar 

  111. Weismann, A. (1989) Essays upon Heredity and Kindred Biological Problems, Calderon Press, Oxford.

    Google Scholar 

  112. Yu, T., Wang, X., Purring-Koch, C., Wei, Y., and McLendon, G. L. (2001) A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1, J. Biol. Chem., 20, 13034–13038.

    Google Scholar 

  113. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer Verlag, Berlin-Heidelberg.

    Google Scholar 

  114. Sharonov, G. V., Feofanov, A. V., Bocharova, O. V., Astapova, M. V., Dedukhova, V. I., Chernyak, B. V., Dolgikh, D. A., Arseniev, A. S., Skulachev, V. P., and Kirpichnikov, M. P. (2005) Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells, Apoptosis, 10, 797–808.

    PubMed  CAS  Google Scholar 

  115. Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vyssokikh, M. Yu., Chertkova, R. V., Kirpichnikov, M. P., Dolgikh, D. A., Kruglov, A. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Preparation and characterization of mouse embryonic fibroblasts with K72W mutation in somatic cytochrome c gene, Mol. Biol., 43, 596–603.

    CAS  Google Scholar 

  116. Zermati, Y., Mouhamad, S., Stergiou, L., Besse, B., Galluzzi, L., Boehrer, S., Pauleau, A. L., Rosselli, F., D’Amelio, M., Amendola, R., Castedo, M., Hengartner, M., Soria, J. C., Cecconi, F., and Kroemer, G. (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint, Mol. Cell, 28, 624–637.

    PubMed  CAS  Google Scholar 

  117. Murray, T. V., McMahon, J. M., Howley, B. A., Stanley, A., Ritter, T., Mohr, A., Zwacka, R., and Fearnhead, H. O. (2008) A non-apoptotic role for caspase-9 in muscle differentiation, J. Cell Sci., 121, 3786–3793.

    PubMed  CAS  Google Scholar 

  118. Khalil, H., Peltzer, N., Walicki, J., Yang, J. Y., Dubuis, G., Gardiol, N., Held, W., Bigliardi, P., Marsland, B., Liaudet, L., and Widmann, C. (2012) Caspase-3 protects stressed organs against cell death, Mol. Cell Biol., 32, 4523–4533.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Le Page-Degivry, M. T., Bidard, J. N., Rouvier, E., Bulard, C., and Lazdunski, M. (1986) Presence of abscisic acid, a phytohormone, in the mammalian brain, Proc. Natl. Acad. Sci. USA, 83, 1155–1158.

    PubMed  PubMed Central  Google Scholar 

  120. Bruzzone, S., Basile, G., Mannino, E., Sturla, L., Magnone, M., Grozio, A., Salis, A., Fresia, C., Vigliarolo, T., Guida, L., De Flora, A., Tossi, V., Cassia, R., Lamattina, L., and Zocchi, E. (2012) Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes, J. Cell. Physiol., 227, 2502–2510.

    PubMed  CAS  Google Scholar 

  121. Wolfe, K. H., Sharp, P. M., and Li, W. H. (1989) Mutation rates differ among regions of the mammalian genome, Nature, 337, 283–285.

    PubMed  CAS  Google Scholar 

  122. Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E. (1997) Evolution of high mutation rates in experimental populations of E. coli, Nature, 387, 703–705.

    PubMed  CAS  Google Scholar 

  123. Hempenstall, S., Picchio, L., Mitchell, S. E., Speakman, J. R., and Selman, C. (2010) The impact of acute caloric restriction on the metabolic phenotype in male C57BL/6 and DBA/2 mice, Mech. Ageing Dev., 131, 111–118.

    PubMed  CAS  Google Scholar 

  124. Sun, H., Skogerbo, G., Wang, Z., Liu, W., and Li, Y. X. (2008) Structural relationships between highly conserved elements and genes in vertebrate genomes, PLoS One, 3, e3727.

  125. Wright, B. E. (2004) Stress-directed adaptive mutations and evolution, Mol. Microbiol., 52, 643–650.

    PubMed  CAS  Google Scholar 

  126. Yee, C., Yang, W., and Hekimi, S. (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans, Cell, 157, 897–909.

    PubMed  CAS  Google Scholar 

  127. Hill, S. M., Hao, X., Liu, B., and Nystrom, T. (2014) Lifespan extension by a metacaspase in the yeast Saccharomyces cerevisiae, Science, doi: 10.1126/sci-ence.1252634.

    Google Scholar 

  128. Skulachev, V. P. (2011) SkQ1 treatment and food restriction — two ways to retard an aging program of organisms, Aging (Albany), 3, 1045–1050.

    CAS  Google Scholar 

  129. Heywood, R., Sortwell, R. J., Noel, P. R. B., Street, A. E., Prentice, D. E., Roe, F. J. C., Wadsworth, P. F., Worden, A. N., and Vanabbe, N. J. (1979) Safety evaluation of toothpaste containing chloroform. 3. Long-term study in beagle dogs, J. Environ. Pathol. Tox., 2, 835–851.

    CAS  Google Scholar 

  130. Palmer, A. K., Street, A. E., Roe, F. J. C., Worden, A. N., and Vanabbe, N. J. (1979) Safety evaluation of toothpaste containing chloroform. 2. Long-term studies in rats, J. Environ. Pathol. Tox., 2, 821–833.

    CAS  Google Scholar 

  131. Schulz, T. J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress, Cell Metab., 6, 280–293.

    PubMed  CAS  Google Scholar 

  132. Ristow, M., and Schmeisser, K. (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS), Dose Response, 12, 288–341.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen, J., Braeckman, B. P., Schoofs, L., and Temmerman, L. (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1321776111.

    Google Scholar 

  134. Xiao, R., Zhang, B., Dong, Y. M., Gong, J. K., Xu, T., Liu, J. F., and Xu, X. Z. S. (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel, Cell, 152, 806–817.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Skulachev.

Additional information

Original Russian Text © M. V. Skulachev, V. P. Skulachev, 2014, published in Biokhimiya, 2014, Vol. 79, No. 10, pp. 1205–1224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skulachev, M.V., Skulachev, V.P. New data on programmed aging — slow phenoptosis. Biochemistry Moscow 79, 977–993 (2014). https://doi.org/10.1134/S0006297914100010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914100010

Key words

Navigation