Skip to main content
Log in

Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Immediately upon contact with blood, nanosized drug delivery systems become coated with a so-called protein corona. The quantitative and qualitative composition of the corona defines not only the behavior of the nanocarrier in the circulation but, ultimately, the pharmacokinetics and biodistribution of the encapsulated drug as well. In turn, the composition of the protein corona depends on the surface properties of the nanoparticles, such as size and distribution of charge and functional groups on the particle surface. Liposomes belong to the most bio- and hemocompatible drug delivery systems feasible for intravenous route of administration required in chemotherapy of metastasizing tumors. However, knowledge on the interactions of liposomes of various compositions with blood plasma proteins remains fragmentary. Moreover, all nanosized drug delivery systems are potential targets for the innate immunity system, primarily the complement (C) system, which underlies frequent cases of hypersensitivity reactions. Recently, in a panel of in vitro hemocompatibility tests, we demonstrated that liposomes built of natural phospholipids — egg phosphatidylcholine and phosphatidylinositol from Saccharomyces cerevisiae — and loaded with diglyceride conjugates of anticancer drugs melphalan and methotrexate, did not affect the morphology and numbers of the main blood cell types. While preparations with melphalan prodrug were also inert in coagulation and C activation tests, methotrexate-loaded liposomes caused impaired coagulation and C activation. The aim of this work was to study the interactions of liposomes carrying prodrugs of melphalan and methotrexate with blood plasma proteins in vitro. Data on protein binding capacity of liposomes obtained with classical gel permeation chromatography techniques allowed for prediction of rather rapid elimination of the liposomes from circulation. A number of differences revealed through immunoblotting of the liposome-bound proteins agree with the previously obtained data on C activation. The possible mechanism of C activation by methotrexate-containing liposomes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

complement

Mlph-DOG:

diglyceride conjugate of melphalan

Mlph-L:

liposomes loaded with Mlph-DOG

MTX-DOG:

diglyceride conjugate of methotrexate

MTX-L:

liposomes loaded with MTX-DOG

PB :

protein binding

PBS:

phosphate buffered saline

PC:

phosphatidylcholine

PI:

phosphatidylinositol

References

  1. Monopoli, M. P., Aberg, C., Salvati, A., and Dawson, K. A. (2012) Biomolecular coronas provide the biological identity of nanosized materials, Nat. Nanotech., 7, 779–786.

    Article  CAS  Google Scholar 

  2. Walkey, C. D., and Chan, W. C. W. (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment, Chem. Soc. Rev., 41, 2780–2799.

    Article  CAS  PubMed  Google Scholar 

  3. Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., and McNeil, S. E. (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Deliv. Rev., 61, 428–437.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Semple, S. C., Chonn, A., and Cullis, P. R. (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behavior in vivo, Adv. Drug Deliv. Rev., 32, 3–17.

    Article  CAS  PubMed  Google Scholar 

  5. Dobrovolskaia, M. A., Neun, B. W., Man, S., Ye, X., Hansen, M., Patri, A. K., Crist, R. M., and McNeil, S. E. (2014) Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles, Nanomedicine, doi: 10.1016/j.nano.2014.01.009.

    Google Scholar 

  6. Chonn, A., Semple, S. C., and Cullis, P. R. (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes, J. Biol. Chem., 267, 18759–18765.

    CAS  PubMed  Google Scholar 

  7. Szebeni, J. (2012) Hemocompatibility testing for nanomedicines and biologicals: predictive assays for complement mediated infusion reactions, Eur. J. Nanomed., 4, 33–53.

    Article  CAS  Google Scholar 

  8. Szebeni, J., Muggia, F., Gabizon, G., and Barenholz, Y. (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention, Adv. Drug Deliv. Rev., 63, 1020–1030.

    Article  CAS  PubMed  Google Scholar 

  9. Szebeni, J., Muggia, F. M., and Alving, C. R. (1998) Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study, J. Natl. Cancer Inst., 90, 300–306.

    Article  CAS  PubMed  Google Scholar 

  10. Kuznetsova, N., Kandyba, A., Vostrov, I., Kadykov, V., Gaenko, G., Molotkovsky, J., and Vodovozova, E. (2009) Liposomes loaded with lipophilic prodrugs of methotrexate and melphalan as convenient drug delivery vehicles, J. Drug Deliv. Sci. Technol., 19, 51–59.

    CAS  Google Scholar 

  11. Vodovozova, E. L., Moiseeva, E. V., Grechko, G. K., Gayenko, G. P., Nifant’ev, N. E., Bovin, N. V., and Molotkovsky, J. G. (2000) Antitumor activity of cytotoxic liposomes equipped with selectin ligand SiaLeX, in a mouse mammary adenocarcinoma model, Eur. J. Cancer, 36, 942–949.

    Article  CAS  PubMed  Google Scholar 

  12. Kozlov, A. M., Korchagina, E. Yu., Vodovozova, E. L., Bovin, N. V., Molotkovskii, Yu. G., and Syrkin, A. B. (1997) Increase in sarcolysin antitumor activity by transforming it into a lipid derivative and incorporation into the membrane of liposomes containing a carbohydrate vector, Byul. Eksp. Biol. Med., 123, 381–383.

    Article  CAS  Google Scholar 

  13. Kuznetsova, N. R., Sevrin, C., Lespineux, D., Bovin, N. V., Vodovozova, E. L., Meszaros, T., Szebeni, J., and Grandfils, C. (2012) Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer, J. Control Rel., 160, 394–400.

    Article  CAS  Google Scholar 

  14. Heiss, H. W. (1983) in Human Physiology (Schmidt, R. F., and Thews, G., eds.) Springer-Verlag, Berlin-Heidelberg-New York, pp. A43–A44.

  15. Vodovozova, E. L., Nikol’skii, P. Yu., Mikhalev, I. I., and Molotkovskii, Yu. G. (1996) Lipid derivatives of sarcolysin, methotrexate, and rubomycin, Russ. J. Bioorg. Chem., 22, 468–475.

    Google Scholar 

  16. Vodovozova, E. L., Gaenko, G. P., Bobrikova, E. S., Pazynina, G. V., and Molotkovskii, Yu. G. (2007) A diglyceride derivative of methotrexate: synthesis and cytotoxic activity in targeted delivery liposomes, Pharm. Chem. J., 41, 297–301.

    CAS  Google Scholar 

  17. Markwell, M., Haas, S., and Bieber, L. (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 210, 206–210.

    Article  Google Scholar 

  18. Dos Santos, N., Allen, C., Doppen, A.-M., Anantha, M., Cox, K., Gallagher, R. C., Karlsson, G., Edwards, K., Kenner, G., Samuels, L., Webb, M. S., and Bally, M. B. (2007) Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding, Biochim. Biophys. Acta, 1768, 1367–1377.

    Article  PubMed  Google Scholar 

  19. Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silverstained polyacrylamide gels, Anal. Chem., 68, 850–858.

    Article  CAS  PubMed  Google Scholar 

  21. Gabizon, A., and Papahadjopoulos, D. (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. USA, 85, 6949–6953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Peng, A., Straubinger, R. M., and Balu-Iyer, S. V. (2010) Phosphatidylinositol containing lipidic particles reduces immunogenicity and catabolism of factor VIII in hemophilia a mice, AAPS J., 12, 473–481.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Moghimi, S. M., Andersen, A. J., Hashemi, S. H., Lettiero, B., Ahmadvand, D., Hunter, A. C., Andresen, T. L., Hamad, I., and Szebeni, J. (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead, J. Control Rel., 146, 175–181.

    Article  CAS  Google Scholar 

  24. Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K. A., and Linse, S. (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci. USA, 104, 2050–2055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vroman, L., Adams, A., Fischer, G., and Munoz, P. (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces, Blood, 55, 156–159.

    CAS  PubMed  Google Scholar 

  26. Goppert, T. M., and Muller, R. H. (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting, Int. J. Pharm., 302, 172–186.

    CAS  PubMed  Google Scholar 

  27. Sahu, A., and Lambris, J. D. (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity, Immunol. Rev., 180, 35–48.

    Article  CAS  PubMed  Google Scholar 

  28. Soames, C. J., and Sim, R. B. (1997) Interactions between human complement components factor H, factor I and C3b, Biochem. J., 326, 553–561.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Jozsi, M., Manuelian, T., Heinen, S., Oppermann, M., and Zipfel, P. F. (2004) Attachment of the soluble complement regulator factor H to cell and tissue surfaces: relevance for pathology, Histol. Histopathol., 19, 251–258.

    CAS  PubMed  Google Scholar 

  30. Rodriguez de Cordoba, S., Esparza-Gordillo, J., Goicoechea de Jorge, E., Lopez-Trascasa, M., and Sanchez-Corral, P. (2004) The human complement factor H: functional roles, genetic variations and disease associations, Mol. Immunol., 41, 355–367.

    Article  CAS  PubMed  Google Scholar 

  31. Price, M. E., Cornelius, R. M., and Brash, J. L. (2001) Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma, Biochim. Biophys. Acta, 1512, 191–205.

    Article  CAS  PubMed  Google Scholar 

  32. Aramaki, Y., Akiyama, K., Hara, T., and Tsuchiya, S. (1995) Recognition of charged liposomes by rat peritoneal and splenic macrophages: effects of fibronectin on the uptake of charged liposomes, Eur. J. Pharm. Sci., 3, 63–70.

    Article  CAS  Google Scholar 

  33. Rodrigueza, W. V., Phillips, M. C., and Williams, K. J. (1998) Structural and metabolic consequences of liposome-lipoprotein interactions, Adv. Drug Deliv. Rev., 32, 31–43.

    Article  CAS  PubMed  Google Scholar 

  34. Saito, Y. M., Handa, T., and Miyajima, K. (1997) Effect of cholesterol on apolipoprotein A-I binding to lipid bilayers and emulsions, J. Lipid Res., 38, 287–294.

    CAS  PubMed  Google Scholar 

  35. Pham, C. T. N., Mitchell, L. M., Huang, J. L., Lubniewski, C. M., Schall, O. F., Killgore, J. K., Pan, D., Wickline, S. A., Lanza, G. M., and Hourcade, D. E. (2011) Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces, J. Biol. Chem., 286, 123–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Janssen, B. J. C., Christodoulidou, A., McCarthy, A., Lambris, J. D., and Gros, P. (2006) Structure of C3b reveals conformational changes that underlie complement activity, Nature, 444, 213–216.

    Article  CAS  PubMed  Google Scholar 

  37. Moghimi, S. M., Andersen, A. J., Ahmadvand, D., Wibroe, P. P., Andresen, T. L., and Hunter, C. (2011) Material properties in complement activation, Adv. Drug Deliv. Rev., 63, 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  38. Devine, D. V., and Marjan, J. M. (1997) The role of immunoproteins in the survival of liposomes in the circulation, Crit. Rev. Ther. Drug Carrier Syst., 14, 105–131.

    Article  CAS  PubMed  Google Scholar 

  39. Devine, D. V., Wong, K., Serrano, K., Chonn, A., and Cullis, P. R. (1994) Liposome-complement interactions in rat serum: implications for liposome survival studies, Biochim. Biophys. Acta, 1191, 43–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Vodovozova.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 8, pp. 999–1008.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-078, June 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, N.R., Vodovozova, E.L. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry Moscow 79, 797–804 (2014). https://doi.org/10.1134/S0006297914080070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914080070

Key words

Navigation