Skip to main content
Log in

Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the preceding paper (A. Ghosh et al. (2011) Biochemistry (Moscow), 76, 1051–1060), using several comparable tissue materials, it has been convincingly demonstrated that methylglyoxal, a normal metabolite, inhibits mitochondrial complex I of specifically malignant cells. This suggests a distinct alteration of complex I, a highly important enzyme for energy (ATP) production, in malignancy. The present paper shows that as a consequence of this inhibition mitochondrial membrane potential is drastically reduced in sarcoma tissue but not in normal skeletal muscle. This was estimated spectrofluorimetrically using the dye rhodamine 123. As a consequence, cytochrome c was released from the sarcoma mitochondria as evidenced by Western blot analysis. Moreover, on treatment with methylglyoxal membrane potential collapse of sarcoma 180 cells was also indicated by fluorescence-activated cell sorter analysis. Atomic force microscopic study demonstrated gross structural alteration specifically of tumor mitochondria on methylglyoxal treatment. All these studies suggest that methylglyoxal might initiate an apoptotic event in malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

FACS:

fluorescence-activated cell sorter

JC-1:

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide

3MC:

3-methyl cholanthrene

References

  1. Talukdar, D., Ray, S., Ray, M., and Das, S. (2008) Drug Metab. Drug Interact., 23, 175–210.

    Article  CAS  Google Scholar 

  2. Kalapos, M. P. (2008) Drug Metab. Drug Interact., 23, 69–91.

    Article  CAS  Google Scholar 

  3. Talukdar, D., Chaudhuri, B. S., Ray, M., and Ray, S. (2009) Biochemistry (Moscow), 74, 1059–1069.

    Article  CAS  Google Scholar 

  4. Szent-Györgyi, A. (1979) Ciba Found. Symp., 67, 3–18.

    Google Scholar 

  5. Ghosh, A., Bera, S., Ghosal, S., Ray, S., Basu, A., and Ray, M. (2011) Biochemistry (Moscow), 76, 1051–1060.

  6. Wong, T. W. L., Yu, H. Y., Kong, S. K., Fung, K. P., and Kwok, T. T. (2000) Life Scie., 67, 1111–1118.

    Article  CAS  Google Scholar 

  7. El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., and Leverve, X. (2000) J. Biol. Chem., 275, 223–228.

    Article  PubMed  CAS  Google Scholar 

  8. Patra, S., Bera, S., Roy, S. S., Ghoshal, S., Ray, S., Basu, A., Schlattner, U., Wallimann, T., and Ray, M. (2008) FEBS J., 275, 3236–3247.

    Article  PubMed  CAS  Google Scholar 

  9. Moreadith, R. W., and Fiskum, G. (1984) Anal. Biochem., 137, 360–367.

    Article  PubMed  CAS  Google Scholar 

  10. Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G. (2003) Biochim. Biophys. Acta, 1606, 137–146.

    Article  PubMed  CAS  Google Scholar 

  11. Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., and Chen, L. B. (1995) Methods Enzymol., 260, 406–417.

    Article  PubMed  CAS  Google Scholar 

  12. Layton, B. E., Sastry, A. M., Lastoskie, C. M., Philbert, M. A., Miller, T. J., Sullivan, K. A., Feldman, E. L., and Wang, C. W. (2004) BioTechniques, 37, 564–573.

    PubMed  CAS  Google Scholar 

  13. Layne, E. (1957) Methods Enzymol., 3, 447–454.

    Article  Google Scholar 

  14. Du, J., Suzuki, H., Nagase, F., Akhand, A. A., Yokoyama, T., Miyata, T., Kurokawa, K., and Nakashima, I. (2000) J. Cell. Biochem., 77, 333–344.

    Article  PubMed  CAS  Google Scholar 

  15. Inarrea, P., Moini, H., Han, D., Rettorl, D., Aguilo, I., Alava, M. A., Iturralde, M., and Cadenas, E. (2007) Biochem. J., 405, 173–179.

    PubMed  CAS  Google Scholar 

  16. Mancini, M., Anderson, B. O., Caldwell, E., Sedginasab, M., Paty, P. B., and Hochenbery, D. M. (1997) J. Cell. Biol., 138, 449–469.

    Article  PubMed  CAS  Google Scholar 

  17. Pritchard, D. E., Singh, J., Carlisle, D. L., and Patierno, S. R. (2000) Carcinogenesis, 21, 2027–2033.

    Article  PubMed  CAS  Google Scholar 

  18. Speer, O., Morkunaite-Haimi, S., Liobikas, J., Franck, M., Hensbo, L., Linder, M. D., Kinnunen, P. K., Wallimann, T., and Eriksson, O. (2003) J. Biol. Chem., 278, 34757–34763.

    Article  PubMed  CAS  Google Scholar 

  19. Banerjee, T., and Mukhopadhyay, R. (2008) Biochem. Biophys. Res. Commun., 374, 264–268.

    Article  PubMed  CAS  Google Scholar 

  20. Kang, Y., Edwards, L. G., and Thornalley, P. J. (1996) Leuk. Res., 20, 397–405.

    Article  PubMed  CAS  Google Scholar 

  21. Chan, W. H., Wu, H. J., and Hsuuw, Y. D. (2005) Ann. N. Y. Acad. Sci., 1042, 372–378.

    Article  PubMed  CAS  Google Scholar 

  22. Milanesa, D. M., Choudhury, M. S., Mallouh, C., Tazaki, H., and Konno, S. (2000) Eur. Urol., 37, 728–734.

    Article  PubMed  CAS  Google Scholar 

  23. Ly, J. D., Grubb, D. R., and Lawen, A. (2003) Apoptosis, 8, 115–128.

    Article  PubMed  CAS  Google Scholar 

  24. Buttke, T. M., and Sandstrom, P. A. (1994) Immunol. Today, 15, 7–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ray.

Additional information

Published in Russian in Biokhimiya, 2011, Vol. 76, No. 10, pp. 1428–1436.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Bera, S., Ray, S. et al. Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma. Biochemistry Moscow 76, 1164–1171 (2011). https://doi.org/10.1134/S0006297911100105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911100105

Key words

Navigation