Skip to main content
Log in

H1 histone modulates DNA hydrolysis with WEN1 and WEN2 endonucleases from wheat coleoptiles

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We show that total H1 histone from wheat seedlings or rat liver enhances hydrolysis of λ phage DNA with plant endonucleases WEN1 and WEN2 isolated from wheat coleoptiles. Optimal DNA/protein weight ratio in the hydrolysis reaction is 1: 1. The action of fractions I and IV (obtained from total wheat H1 histone by electrophoresis) on DNA hydrolysis with WEN1 and WEN2 enzymes depends on the DNA methylation status. Fraction IV of wheat histone H1 stimulates hydrolysis of unmethylated λ phage DNA with WEN1 and WEN2 enzymes. Hydrolysis of methylated λ phage DNA (it contains 5-methylcytosine in Cm5CWGG sequences and N6-methyladenine in Gm6ATC sites) with WEN1 is inhibited with fractions I and IV of wheat H1 histone. Fractions II and III of wheat H1 histone do not influence DNA hydrolysis with WEN1 and WEN2. S-Adenosyl-L-methionine (SAM) stimulates activity of these plant enzymes. But in the presence of H1 histone, SAM does not add to the ability of the enzyme to hydrolyze more DNA compared with that induced with H1 histone itself. Therefore, the stimulating effects of SAM and H1 histone on DNA hydrolysis with plant endonucleases may be similar. It could be suggested that SAM and H1 histone can induce more or less analogous allosteric transformations in the structure of the investigated plant endonucleases. Thus, DNA hydrolysis with plant endonucleases is modulated with total H1 histone. H1 histone fractions affect DNA hydrolysis in a different fashion; they enhance or inhibit hydrolysis depending on the DNA methylation status. We suggest that H1 histone changes site specificity of endonucleases or it might be responsible for formation of new or masking of old sites available for these enzymes due to changes in DNA structure induced in a DNA-histone complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pair

BSA:

bovine serum albumin

endo G:

endonuclease G

SAM:

S-adenosyl-L-methionine

TBE:

Tris-borate buffer containing EDTA

References

  1. Chikhirgina, E. V., and Vorobjev, V. I. (2002) Tsitologiya, 44, 721–735.

    Google Scholar 

  2. Khochbin, S. (2001) Gene, 271, 1–12.

    Article  PubMed  CAS  Google Scholar 

  3. Lennox, R. W., Oshima, R. G., and Cohen, L. H. (1982) J. Biol. Chem., 257, 5183–5189.

    PubMed  CAS  Google Scholar 

  4. Hall, J. M., and Cole, R. D. (1985) Biochemistry, 24, 7765–7771.

    Article  PubMed  CAS  Google Scholar 

  5. Ponte, I., Vidal-Taboada, J. M., and Suau, P. (1998) Mol. Biol. Evol., 15, 702–708.

    PubMed  CAS  Google Scholar 

  6. Samejima, K., Tone, S., and Earnshaw, W. C. (2001) J. Biol. Chem., 48, 45427–45432.

    Article  Google Scholar 

  7. Matassov, D., Kagan, T., Leblanc, J., Sikorska, M., and Zakeri, Z. (2004) Meth. Mol. Biol., 30, 1–17.

    Google Scholar 

  8. Liu, X., Zou, H., Widlak, P., Garrard, W., and Wang, X. (1999) J. Biol. Chem., 274, 13836–13840.

    Article  PubMed  CAS  Google Scholar 

  9. Mizuta, R., Mizuta, M., Araki, S., Shiokawa, D., Tanuma, S., and Kitamura, D. (2006) Biochem. Biophys. Res. Commun., 345, 560–567.

    Article  PubMed  CAS  Google Scholar 

  10. Fedoreyeva, L. I., Sobolev, D. E., and Vanyushin, B. F. (2007) Epigenetics, 2, 50–53.

    PubMed  Google Scholar 

  11. Fedoreyeva, L. I., Sobolev, D. E., and Vanyushin, B. F. (2008) Biochemistry (Moscow), 73, 1000–1006.

    Article  CAS  Google Scholar 

  12. Smirnova, T. A., Prusov, A. N., Kolomijtseva, G. Ya., and Vanyushin, B. F. (2004) Biochemistry (Moscow), 69, 1128–1135.

    Article  CAS  Google Scholar 

  13. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  14. Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Bakeeva, L. E., Kirnos, M. D., Aleksandrushkina, N. I., Kazimirchyuk, S. B., Shorning, B. Yu., Zamyatnina, V. A., Yaguzhinsky, L. S., and Vanyushin, B. F. (1999) FEBS Lett., 457, 122–125.

    Article  PubMed  CAS  Google Scholar 

  16. Kodama, Y., Nagaya, S., Shinmyo, A., and Kato, K. (2007) Plant Cell Physiol., 48, 459–470.

    Article  PubMed  CAS  Google Scholar 

  17. Gantt, J. S., and Lenvik, T. R. (1991) Eur. J. Biochem., 202, 1029–1039.

    Article  PubMed  CAS  Google Scholar 

  18. Eden, S., and Cedar, H. (1994) Curr. Opin. Genet. Develop., 4, 255–259.

    Article  CAS  Google Scholar 

  19. Sternberg, N. (1985) J. Bacteriol., 164, 490–493.

    PubMed  CAS  Google Scholar 

  20. Higurashi, M., and Cole, R. D. (1991) J. Biol. Chem., 266, 8619–8625.

    PubMed  CAS  Google Scholar 

  21. Kas, E., Izaurralde, E., and Laemmli, U. K. (1989) J. Mol. Biol., 210, 587–599.

    Article  PubMed  CAS  Google Scholar 

  22. McArthur, M., and Thomas, J. O. (1996) EMBO J., 15, 1705–1714.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Vanyushin.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 2, pp. 181–189.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-181, December 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedoreyeva, L.I., Smirnova, T.A., Kolomijtseva, G.Y. et al. H1 histone modulates DNA hydrolysis with WEN1 and WEN2 endonucleases from wheat coleoptiles. Biochemistry Moscow 74, 145–152 (2009). https://doi.org/10.1134/S0006297909020047

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909020047

Key words

Navigation