Skip to main content
Log in

Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In monolayer of HeLa cells treated with tumor necrosis factor (TNF), apoptotic cells formed clusters indicating possible transmission of apoptotic signal via the culture media. To investigate this phenomenon, a simple method of enabling two cell cultures to interact has been employed. Two coverslips were placed side by side in a Petri dish, one coverslip covered with apoptogen-treated cells (the inducer) and another with non-treated cells (the recipient). TNF, staurosporine, or H2O2 treatment of the inducer cells is shown to initiate apoptosis on the recipient coverslip. This effect is increased by a catalase inhibitor aminotriazole and is arrested by addition of catalase or by pre-treatment of either the inducer or the recipient cells with nanomolar concentrations of mitochondria-targeted cationic antioxidant MitoQ (10-(6′-ubiquinolyl)decyltriphenylphosphonium), which specifically arrests H2O2-induced apoptosis. The action of MitoQ is abolished by an uncoupler preventing accumulation of MitoQ in mitochondria. It is concluded that reactive oxygen species (ROS) produced by mitochondria in the apoptotic cells initiate the release of H2O2 from these cells. The H2O2 released is employed as a long-distance cell suicide messenger. In processing of such a signal by the recipient cells, mitochondrial ROS production is also involved. It is suggested that the described phenomenon may be involved in expansion of the apoptotic region around a damaged part of the tissue during heart attack or stroke as well as in “organoptosis”, i.e. disappearance of organs during ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FCCP:

carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone

MitoQ:

10-(6′-ubiquinolyl)decyltriphenylphosphonium

ROS:

reactive oxygen species

TNF:

tumor necrosis factor

References

  1. Skulachev, V. P. (1996) Quart. Rev. Biophys., 29, 169–202.

    CAS  Google Scholar 

  2. Droge, W. (2001) Physiol. Rev., 82, 47–95.

    Google Scholar 

  3. Skulachev, V. P. (2003) in Topics in Current Genetics. Model Systems in Ageing (Nystrom, T., and Osiewacz, H. D. eds.) Vol. 3, Springer Verlag, Berlin-Heidelberg, pp. 191–238.

    Google Scholar 

  4. Skulachev, V. P. (1997) Biosci. Rep., 17, 347–366.

    CAS  PubMed  Google Scholar 

  5. Skulachev, V. P. (1998) Biochemistry (Moscow), 63, 1438–1440.

    CAS  Google Scholar 

  6. Pletjushkina, O. Y., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Y., Domnina, L. V., Vyssokikh, M. Y., Pustovidko, A. V., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2005) Cell Death Differ., 3, 1–3.

    Google Scholar 

  7. Shchepina, L. A., Pletjushkina, O. Yu., Avetisyan, A. V., Bakeeva, L. E., Fetisova, E. K., Izyumov, D. S., Saprunova, V. B., Vyssokikh, M. Yu., Chernyak, B. V., and Skulachev, V. P. (2002) Oncogene, 21, 8149–8157.

    Article  CAS  PubMed  Google Scholar 

  8. Touraine, R. L., Vahanian, N., Ramsey, W. J., and Blaese, R. M. (1998) Hum. Gene Ther., 9, 2385–2391.

    CAS  PubMed  Google Scholar 

  9. Azzam, E. I., Toledo, S. M., and Little, J. B. (2001) Proc. Natl. Acad. Sci. USA, 98, 473–478.

    Article  CAS  PubMed  Google Scholar 

  10. Murphy, M. P. (2001) Expert Opin. Biol. Ther., 1, 753–763.

    Article  CAS  PubMed  Google Scholar 

  11. Kelso, G. F., Porteous, C. M., Hughes, G., Ledgerwood, E. C., Gane, A. M., Smith, R. A., and Murphy, M. P. (2002) Ann. N. Y. Acad. Sci., 959, 263–274.

    CAS  PubMed  Google Scholar 

  12. Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.

    CAS  PubMed  Google Scholar 

  13. Grinius, L. L., Jasaitis, A. A., Kadziauskas, J. P., Liberman, E. A., Skulachev, V. P., Topali, V. P., and Vladimirova, M. A. (1970) Biochim. Biophys. Acta, 216, 1–12.

    CAS  PubMed  Google Scholar 

  14. Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.

    CAS  PubMed  Google Scholar 

  15. Skulachev, V. P. (1989) Energetics of Biological Membranes [in Russian], Nauka, Moscow.

    Google Scholar 

  16. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Solott, S. J. (2000) J. Exp. Med., 192, 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  17. Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E., and Kunz, W. (2004) J. Biol. Chem., 279, 4127–4135.

    CAS  PubMed  Google Scholar 

  18. Reznikov, K., Kolesnikova, L., Pramanik, A., Tan-no, K., Gileva, I., Yakovleva, T., Rigler, R., Terenius, L., and Bakalkin, G. (2000) FASEB J., 14, 1754–1764.

    Article  CAS  PubMed  Google Scholar 

  19. Bauer, G. (2000) Anticancer Res., 20, 4115–4140.

    CAS  PubMed  Google Scholar 

  20. Lyng, F.M., Seymour, C. B., and Mothersill, C. (2000) Br. J. Cancer, 83, 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  21. Mothersill, C., and Seymour, C. (2003) Exp. Hematol., 31 437–445.

    Article  PubMed  Google Scholar 

  22. Waghray, M., Cui, Z., Horowitz, J. C., Subramanian, I. M., Martinez, F. J., Toews, G. B., and Thannickal, V. J. (2005) FASEB J., 19, 854–856.

    CAS  PubMed  Google Scholar 

  23. Lam, E., Kato, N., and Lawton, M. (2001) Nature, 411, 848–853.

    Article  CAS  PubMed  Google Scholar 

  24. Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C., and Minibayeva, F. (2002) J. Exp. Bot., 53, 1367–1376.

    Article  CAS  PubMed  Google Scholar 

  25. Skulachev, V. P. (1999) Mol. Asp. Med., 20, 139–184.

    CAS  Google Scholar 

  26. Kashiwagi, A., Hanada, H., Yabuki, M., Kano, T., Ishisaka, R., Sasaki, J., Inoue, M., and Ursumi, K. (1999) Free Rad. Biol. Med., 26, 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  27. Xue, L. Y., Butler, N. J., Makrigiorgos, G. M., Adelstein, S. J., and Kassis, A. I. (2002) Proc. Natl. Acad. Sci. USA, 99, 13765–13770.

    CAS  PubMed  Google Scholar 

  28. Shao, R., Xia, W., and Hung, M.-C. (2000) Cancer Res., 60, 3123–3126.

    CAS  PubMed  Google Scholar 

  29. Kagawa, S., He, C., Gu, J., Koch, P., Rha, S.-J., Curley, S. A., Stephens, L. C., and Fang, B. (2001) Cancer Res., 61, 330–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Biokhimiya, 2006, Vol. 71, No. 1, pp. 75–84.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM05-174, November 13, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pletjushkina, O.Y., Fetisova, E.K., Lyamzaev, K.G. et al. Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal. Biochemistry (Moscow) 71, 60–67 (2006). https://doi.org/10.1134/S0006297906010093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906010093

Key words

Navigation