Skip to main content
Log in

Encapsulation of Bacillus subtilis Cells for Production of Whey Protein Hydrolysates

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis biomass was encapsulated in 2 biopolymeric membranes to evaluate the enzyme hydrolysis of whey protein and the functional characteristics of the obtained products. The encapsulates of membranes contained composite gel of sodium alginate and chitosan supplied with polyethylene glycol or glutaraldehyde for improving the mechanical properties of the composite. Morphology, porosity, water retention and biomass proliferation of membranes were analyzed. Protease activity from encapsulated B. subtilis was evaluated by the kinetic of protein hydrolysis for 8 h. Quality of hydrolysates was analyzed according to their functional properties. Conventional hydrolysis by commercial neutrase and free biomass of B. subtilis were used as control. Alginate-chitosan-polyethylene glycol composite gave the best results of bacterial encapsulation. Functional properties of the whey protein hydrolysates were comparable with those for products obtained after the action of neutrase and free microbial biomass. In addition, the enzyme activity remained after 5 cycles of hydrolysis. Thus, encapsulating microbial biomass could be an economic alternative of biocatalytic process to produce functional whey products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Muro-Urista, C., Álvarez-Fernández, R., Riera-Rodríguez, F., Arana-Cuenca, A., and Téllez-Jurado, A., Food Sci. Technol. Int., 2011, vol. 17, no. 4, pp. 293–317.

    Article  CAS  PubMed  Google Scholar 

  2. Abd El-Salam, M.H. and El-Shibiny, S., Critic. Rev. Food Sci. Nutr., 2017, vol. 57, pp. 1119–1132.

    Article  CAS  Google Scholar 

  3. Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F., and Wahab, R.A., Biotechnol. Biotechnol. Equip., 2015, vol. 29, no. 2, pp. 205–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh, P., Medronho, B., Alves, L., da Silva, G.J., and Lindman, B., Carbohydr. Polym., 2017, vol. 175, no. 6, pp. 87–95.

    Article  CAS  PubMed  Google Scholar 

  5. El-Zahar, K., Chobert, J.M., Sitohy, M., Dalgalarrondo, M., and Haertlé, T., Mol. Nutr. Food Res., 2003, vol. 47, no. 3, pp. 199–206.

    CAS  Google Scholar 

  6. Pant, G., Prakash, A., Pavani, J.V.P., Bera, S., Deviram, G.V.N.S., et al., J. Taibah. Univ. Sci., 2015, vol. 9, no. 1, pp. 50–55.

    Article  Google Scholar 

  7. Baysal, K., Aroguz, A.Z., Adiguzel, Z. and Baysal, B.M., Int. J. Biol. Macromol., 2013, vol. 59, pp. 342–348.

    Article  CAS  PubMed  Google Scholar 

  8. Bapat, P., Kumar, S., Wangikar, P., Venkatesh, K.V., J. Microbiol. Methods, 2006, vol. 65, pp. 107–116.

    Article  CAS  PubMed  Google Scholar 

  9. Tovar-Jiménez, X., Arana-Cuenca, A., Téllez-Jurado, A., Abreu-Corona, A., and Muro-Urista, C.R., J. Mex. Chem. Soc., 2012, vol. 56, no. 4, pp. 369–377.

    Google Scholar 

  10. Tovar-Jiménez, X., Muro-Urista, C.R., Tellez-Jurado, A., Mercado-Flores, Y., Abreu-Corona1, A. and Arana-Cuenca, A., Rev. Mex. Ing. Quím., 2017, vol. 16, no. 1, pp.11–18.

    Google Scholar 

  11. Ortega, L., Romero, A., Muro, C., and Riera, F., Int. J. Polym. Sci., 2015, vol. 2015, pp. 1–10.

    Article  CAS  Google Scholar 

  12. Simó, G., Fernández-Fernández, E., Vila-Crespo, J., Ruipérez, V., and Rodríguez-Nogales, J.M., Carbohydr. Polym., 2017, vol. 170, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  13. Adinarayana, K., Jyothi, B., and Ellaiah, P., AAPS PharmSciTech, 2005, vol. 6, no. 3, pp. 391–397.

    Article  Google Scholar 

  14. Custódio, M.F., Goulart, A.J., Marques, D.P., Giordano, R.C., Giordano, L.C., and Monti, R.A., Alim. Nutr. Araraquara, 2009, vol.16, no. 2, pp. 105–109.

    Google Scholar 

  15. Kim, S.B., Seo, I.S., Khan, M.A., Ki, K.S., Lee, W.S., Lee, H.J., and Kim, H.S., J. Dairy Sci., 2007, vol. 90, no. 9, pp. 4033–4042.

    Article  CAS  PubMed  Google Scholar 

  16. Le Maux, S., Nongonierma, A.B., Barre, C., and FitzGerald, R.J., Food Chem., 2016, vol. 199, pp. 246–251.

    Article  CAS  PubMed  Google Scholar 

  17. Lacou, L., Léonil, J., and Gagnaire, V., Food Hydrocoll., 2016, vol. 57, pp. 187–199.

    Article  CAS  Google Scholar 

  18. Ghribi, A.M., Gafsi, I.M., Sila, A., Blecker, C., Danthine, S., Attia, H., and Besbes, S., Food Chem., 2015, vol. 187, pp. 322–330.

    Article  CAS  Google Scholar 

  19. Pacheco-Aguilar, R., Mazorra-Manzano, M.A., and Ramírez-Suárez, J.C., Food Chem., 2008, vol. 109, no. 4, pp. 782–789.

    Article  CAS  PubMed  Google Scholar 

  20. De Castro, R.J., Domingues, M.A., Ohara, A., Okuro, P.K., dos Santos, J., Brexó, R., and Sato, R., Food Structure, 2017, vol.14, pp. 17–29.

    Article  Google Scholar 

  21. Corzo-Martínez, M., Moreno, F. J., Villamiel, M., Patino, J. M. R., and Sánchez, C.C., Food Hydrocoll., 2017, vol. 66, pp. 16–26.

    Article  CAS  Google Scholar 

  22. Tamm, F. and Drusch, S., Food Hydrocoll., 2017, vol. 63, pp. 8–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Muro.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado, Y., Muro, C., Rivero, I.A. et al. Encapsulation of Bacillus subtilis Cells for Production of Whey Protein Hydrolysates. Appl Biochem Microbiol 54, 624–630 (2018). https://doi.org/10.1134/S0003683818100010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818100010

Keywords:

Navigation