Skip to main content
Log in

Recombinant Tyrosinase from Verrucomicrobium spinosum: Isolation, Characteristics, and Use for the Production of a Protein with Adhesive Properties

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The recombinant tyrosinase from Verrucomicrobium spinosum bacteria has been obtained by heterologous expression in E. coli and isolated in the pure state to determine some of its biochemical properties (the kinetics of the enzymatic reaction, the effect of an inhibitor and activator, and the pH optimum). Coexpression of the genes for tyrosinase and recombinant adhesive mussel protein in one producer strain was used to introduce posttranslational modifications into the adhesive protein. These modifications involved the transformation of tyrosine residues into DOPA residues, which makes the protein capable of molecular adhesion in an aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. The online version of the article contains supplementary materials that are available free of charge on the journal website, http://www.biotechnology-journal.ru/.

REFERENCES

  1. Haghbeen, K. and Tan, E.W., Direct spectrophotometric assay of monooxygenase and oxidase activities of mushroom tyrosinase in the presence of synthetic and natural substrates, Anal. Biochem., 2003, vol. 312, pp. 23–32. PMID: 12479831

    Article  CAS  PubMed  Google Scholar 

  2. Fairhead, M. and Thony-Meyer, L., Role of the C-terminal extension in a bacterial tyrosinase, FEBS J., 2010, vol. 277, no. 9, pp. 2083–2095. doi 10.1111/ j.1742-4658.2010.07621.x

    Article  CAS  PubMed  Google Scholar 

  3. Ensuncho, L., Alvarez-Cuenca, M., and Legge, R.L., Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor, Bioproc. Biosyst. Eng., 2005, vol. 27, pp. 185–191. doi 10.1007/s00449-005-0400-x

    Article  CAS  Google Scholar 

  4. Ikehata, K. and Nicell, J.A., Characterization of tyrosinase for the treatment of aqueous phenols, Bioresour. Technol., 2000, vol. 74, pp. 191–199. PMID: 11925171

    Article  CAS  Google Scholar 

  5. Tembe, S., Karve, M., and Inamdar, S., Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film, Anal. Biochem., 2006, vol. 349, pp. 72–77. doi 10.1016/j.ab.2005.11.016

    Article  CAS  PubMed  Google Scholar 

  6. Nistor, C., Emneus, J., and Gorton, L., Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds, Anal. Chim. Acta, 1999, vol. 387, pp. 309–326. doi 10.1016/ S0003-2670(99)00071-9

    Article  CAS  Google Scholar 

  7. Irimia-Vladu, M., “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future, Chem. Soc. Rev., 2014, vol. 43, no. 2, pp. 588–610. doi 10.1039/C3CS60235D

    Article  CAS  PubMed  Google Scholar 

  8. Koyanagi, T., Katayama, T., and Suzuki, H., Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR, J. Biotechnol., 2005, vol. 115, pp. 303–306. doi 10.1016/j.jbiotec.2004.08.016

    Article  CAS  PubMed  Google Scholar 

  9. Lee, B.P., Messersmith, P., and Israelachvili, J.N., Mussel-inspired adhesives and coatings, Annu. Rev. Mater. Res., 2011, vol. 41, pp. 99–132. doi 10.1146/ annurev-matsci-062910-100429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, Q., Gourdon, D., Sun, C., and Holten-Andersen, N., Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 10, pp. 3782–3786. doi 10.1073/ pnas.0607852104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, Q., Danner, E., Waite, J.H., Israelachvili, J.N., et al., Adhesion of mussel foot proteins to different substrate surfaces, J. R. Soc. Interface, 2013, vol. 10, no. 79, pp. 56–68. doi 10.1098/rsif.2012.0759

    Article  CAS  Google Scholar 

  12. Yu, J., Kan, Y., Rapp, M., et al., Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin film, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 39, pp. 15 680–15 685. doi 10.1073/ pnas.1315015110

    Article  Google Scholar 

  13. Clancy, S.K., Sodano, A., Cunningham, D.J., et al., Marine bioinspired underwater contact adhesion, Biomacromolecules, 2016, vol. 17, no. 5, pp. 1869–1874. doi 10.1021/acs.biomac.6b00300

    Article  CAS  PubMed  Google Scholar 

  14. Li, A., Mu, Y., Jiang, W., et al., A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions, Chem. Commun. (Camb.), 2015, vol. 51, no. 44, pp. 9117–9120. doi 10.1039/c5cc00101c

    Article  CAS  Google Scholar 

  15. Jeon, E.Y., Hwang, B.H., Yang, Y.J., et al., Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking, Biomaterials, 2015, vol. 67, pp. 11–19. doi 10.1016/j.biomaterials.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  16. Selinheimo, E., NiEidhin, D., and Steffensen, C., Comparison of the characteristics of fungal and plant tyrosinases, J. Biotechnol., 2007, vol. 130, no. 4, pp. 471–480. doi 10.1016/j.jbiotec.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  17. Sevastyanov, O.V., Properties of tyrosinase of fungi Agaricus bisporus and its use for the elimination of chlorinated phenols, Bull. Odessa Natl. Univ. Chem., 2009, vol. 14, no. 3, pp. 28–35.

    Google Scholar 

  18. Kamal, U.Z., Ayesha, S.A., and Sharique, A.A., Purification and characterization of melanogenic enzyme tyrosinase from button mushroom, Enzyme Res., 2014, vol. 10, pp. 22–27. doi 10.1155/2014/120739

    Google Scholar 

  19. dos Santos, V.P.S., Mendonca, C., Pereira, P.R., et al., Compracao de metodos de extracao e caracterizacao da enzima tirosinase de agaricus bisporus, in XX Congresso Brasileiro de Engenharia Quimica, 2015, vol. 2, pp. 603–610. doi 10.5151/chemeng-cobeq2014-0435-25499-174494

  20. Markova, E., Kotik, M., Krenkova, A., et al., Recombinant tyrosinase from Polyporus arcularius: overproduction in Escherichia coli, characterization, and use in a study of aurones as tyrosinase effectors, J. Agric. Food Chem., 2016, vol. 64, no. 14, pp. 2925–2931. doi 10.1021/acs.jafc.6b00286

    Article  CAS  PubMed  Google Scholar 

  21. Aoife, M.M., Evelyn, M.D., Sarah, B., et al., Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6, Enzyme Microb. Technol., 2007, vol. 40, pp. 1435–1441. doi 10.1016/j.enzmictec.2006.10.020

    Article  CAS  Google Scholar 

  22. Lim, S., Choi, Y.S., Kang, D.G., et al., The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins, Biomaterials, 2010, vol. 31, no. 13, pp. 3715–3722. doi 10.1016/j.biomaterials.2010.01.063

    Article  CAS  PubMed  Google Scholar 

  23. Choi, Y.S., Yang, Y.J., and Yang, B., In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli, Microb. Cell. Fact., 2012, vol. 11, p. 139. doi 10.1186/1475-2859-11-139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, B., Kang, D.G., Seo, J.H., et al., A comparative study on the bulk adhesive strength of the recombinant mussel adhesive protein fp-3, Biofouling, 2013, vol. 29, no. 5, pp. 483–490. doi 10.1080/08927014.2013.782541

    Article  CAS  PubMed  Google Scholar 

  25. Yu, J., Wei, W., Menyo, M.S., et al., Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH, Biomacromolecules, 2013, vol. 14, no. 4, pp. 1072–1027. doi 10.1021/bm301908y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haemers, S., Koper, G.J., and Frens, G., Effect of oxidation rate on cross-linking of mussel adhesive proteins, Biomacromolecules, 2003, vol. 4, no. 3, pp. 632–640. doi 10.1021/ bm025707n

    Article  CAS  PubMed  Google Scholar 

  27. Monahan, J. and Wilker, J.J., Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing, Langmuir, 2004, vol. 20, no. 9, pp. 3724–3729. PMID:15875406

    Article  CAS  PubMed  Google Scholar 

  28. Zeng, H., Hwang, D.S., Israelachvili, J.N., and Waite, J.H., Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 12 850–12 853. doi 10.1073/pnas.1007416107

    Article  Google Scholar 

  29. Hwang, D.S., Gim, Y., and Cha, H.J., Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli, Biotechnol. Prog., 2005, vol. 21, no. 3, pp. 965–970. doi 10.1021/bp050014e

    Article  CAS  PubMed  Google Scholar 

  30. Hwang, D.S., Yoo, H.J., Jun, J.H., et al., Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli, Appl. Environ. Microbiol., 2004, vol. 70, no. 6, pp. 3352–3359. doi 10.1128/ AEM.70.6.3352-3359.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Briceno, A., Munoz, P., Brito, P., et al., Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin, Neurotox. Res., 2016, vol. 29, pp. 381–393. doi 10.1007/s12640-015-9560-x

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, J., Defante, A.P., Lin, F., et al., Adhesion properties of catechol-based biodegradable amino acid-based poly (ester urea) copolymers inspired from mussel proteins, Biomacromolecules, 2015, vol. 16, no. 1, pp. 266–274. doi 10.1021/bm501456g

    Article  CAS  PubMed  Google Scholar 

  33. Jing, Yu., Kan, Yajing., Rapp, M., et al., Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 39, pp. 15 680–15 685. doi 10.1073/pnas.1315015110

    Article  Google Scholar 

  34. Axambayeva, A.S., Shagyrova, Zh.S., Shustov, A.V., et al., Novel material: biocompatible glue for use in biology and medicine—recombinant mussel adhesive proteins, Eurasian J. Appl. Biotechnol., 2016, vol. 3, pp. 24–35.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan (no. 0115PK01798, “Bioadhesive Microparticles Releasing Antimicrobial Peptides, a New Preparation for Prophylaxis and Therapy of Caries”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Aksambayeva.

Additional information

Translated by Yu. Modestova

Abbreviations: DOPA—3,4-dihydroxyphenylalanine; CL—culture liquid; OD600—optical density at a wavelength of 600 nm; LB medium—Luria–Bertani medium; IMAC—immobilized metal affinity chromatography; IPTG—isopropyl-β-D-1-thiogalactopyranoside; NBT—nitro blue tetrazolium; PBS—phosphate buffered saline; SDS—sodium dodecyl sulfate; SDS-PAGE—polyacrylamide gel electrophoresis in the presence of SDS; and SLS—sodium lauroyl sarcosinate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksambayeva, A.S., Zhaparova, L.R., Shagyrova, Z.S. et al. Recombinant Tyrosinase from Verrucomicrobium spinosum: Isolation, Characteristics, and Use for the Production of a Protein with Adhesive Properties. Appl Biochem Microbiol 54, 780–792 (2018). https://doi.org/10.1134/S0003683818080021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818080021

Keywords:

Navigation