Skip to main content
Log in

Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanaseand food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S.K. and Rajapakse, N., Carbohydr. Polym., 2005, vol. 62, no. 4, pp. 357–368.

    Article  CAS  Google Scholar 

  2. Aider, M. and Food, Sci., Technol., 2010, vol. 43, no. 10, pp. 837–842.

    CAS  Google Scholar 

  3. Shahidi, F., Arachchi, J.K.V., and Jeon, Y.J., Trends Food Sci. Technol., 1999, vol. 10, no. 12, pp. 37–51.

    Article  CAS  Google Scholar 

  4. Lee, H.W., Park, Y.S., Jung, J.S., and Shin, W.S., Anaerobe, 2002, vol. 8, no. 6, pp. 319–324.

    Article  PubMed  Google Scholar 

  5. Jung, W.J., Kuk, J.H., Kim, K.Y., Jung, K.C., and Park, R.D., Protein Expres. Purif., 2006, vol. 45, no. 1, pp. 125–131.

    Article  CAS  Google Scholar 

  6. Crolle, G. and D’Este, E., Curr. Med. Res. Opin., 1980, vol. 7, no. 2, pp. 104–109.

    Article  CAS  PubMed  Google Scholar 

  7. Kajimoto, O., Sakamoto, K., Takamori, Y., Kajitani, N., Imanishi, T., Matsuo, R., and Kajitani, Y., Nippon Rinsho Eiyo Gakkaishi, 1988, vol. 20, pp. 41–47.

    Google Scholar 

  8. Teli, M.D. and Sheikh, J., Int. J. Biol. Macromol., 2012, vol. 50, no. 5, pp. 1195–1200.

    Article  CAS  PubMed  Google Scholar 

  9. Imoto, T. and Yagishita, K., Agric. Biol. Chem., 1971, vol. 35, no. 7, pp. 1154–1156.

    Article  CAS  Google Scholar 

  10. Struszczyk, K., Antczak, M.S., Walczak, M., Pomianowska, E., and Antczak, T., Carbohydr. Polym., 2009, vol. 78, no. 4, pp. 16–24.

    Article  CAS  Google Scholar 

  11. Yen, G.C. and Chen, H.Y., J. Agric. Food. Chem., 1995, vol. 43, pp. 27–32.

    Article  CAS  Google Scholar 

  12. De Man, J.C., Rogosa, M., and Sharpe, M.E., J. Appl. Bacteriol., 1960, vol. 23, no. 1, p. 130.

    Article  Google Scholar 

  13. Kim, P., Kang, T.H., Chung, K.J., Kim, I.S., and Chung, K.C., FEMS Microbiol. Lett., 2004, vol. 240, no. 1, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  14. Chang, W.T., Chen, Y.C., and Jao, C.L., Biores. Technol., 2007, vol. 98, no. 6, pp. 1224–1230.

    Article  CAS  Google Scholar 

  15. Somashekar, D. and Joseph, R., Biores.Technol., 1996, vol. 55, no. 1, pp. 35–45.

    Article  CAS  Google Scholar 

  16. Chitin, Chitosan and Related Enzymes, Zikakis, J.P., Ed., New York: Academic Press, 1984, pp. 161–179.

    Google Scholar 

  17. Bai, S., Kumar, M.R., Kumar, D.J.M., Balashanmugam, P., Balakumaran, M.D., and Kalaichelvan, P.T., Archives Appl. Sci. Res., 2012, vol. 4, no. 1, pp. 269–279.

    CAS  Google Scholar 

  18. Battaglia, E., Benoit, I., Brink, J., Wiebenga, A., Coutinho, P.M., Henrisatt, B., and Vries, R.P., BMC Genomics, 2011, vol. 12, no. 38. doi: 10.1186/1471-2164-12-38.

    Google Scholar 

  19. Wang, S.Y., Moyne, A.L., Thottapilly, G., Wu, S.J., Locy, R.D., and Singh, N.K., Enzyme Microb. Technol., 2001, vol. 28, no. 6, pp. 492–498.

    Article  CAS  PubMed  Google Scholar 

  20. Shimosaka, M., Nogawa, M., Wang, X.Y., Kumehara, M., and Okazaki, M., Appl. Environ. Microbiol., 1995, vol. 61, no. 2, pp. 438–444.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kuk, J.H., Jung, W.J., Jo, G.H., Ahn, J.S., Kim, K.Y., and Park, R.D., Biotechnol. Lett., 2005, vol. 27, pp. 7–11.

    Article  CAS  PubMed  Google Scholar 

  22. Binod, P., Sandhya, C., Suma, P., Szakacs, G., and Pandey, A., Biores. Technol., 2007, vol. 98, no. 14, pp. 2742–2748.

    Article  CAS  Google Scholar 

  23. Sinha, S., Dhakate, S.R., Kumar, P., Mathur, R.B., Tripathi, P., and Chand, S., Biores.Technol., 2012, vol. 115, pp. 152–157.

    Article  CAS  Google Scholar 

  24. Sinha, S., Kumar, R., Dhakate, S.R., and Chand, S., Int. J. Biosci. Biochem. Bioinform., 2011, vol. 1, no. 2, pp. 153–158.

    Google Scholar 

  25. Anderson, J.W., Nicolosi, R.J., Borzelleca, J.F., and Food, Chem., Toxicol., 2005, vol. 43, no. 12, pp. 187–201.

    CAS  Google Scholar 

  26. Reginster, J.Y. and Deroisy, R., Lancet, 2001, vol. 357, pp. 251–256.

    Article  CAS  PubMed  Google Scholar 

  27. Carty, M.F., Med Hypotheses, 1996, vol. 47, no. 4, pp. 273–275.

    Article  Google Scholar 

  28. Qin, C., Gao, J., Wang, L., Zeng, L., Liu, Y., and Food, Chem., Toxicology, 2006, vol. 44, no. 4, pp. 855–861.

    CAS  Google Scholar 

  29. Xia, W., Liu, P., Zhang, J., and Chen, J., Food Hydrocolloids, 2011, vol. 25, no. 2, pp. 170–179.

    Article  CAS  Google Scholar 

  30. Sinha, S., Tripathi, P., and Chand, S., Appl. Biochem. Biotechnol., 2012, vol. 167, no. 5, pp. 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, S.L., Liu, K.C., Liang, T.W., Kuo, Y.H., and Wang, C.Y., Food Chem., 2010, vol. 119, no. 4, pp. 1380–1385.

    Article  CAS  Google Scholar 

  32. Kumar, A.B., Varadaraj, M.C., Gowda, L.R., and Tharanathan, R.N., Biochem. J., 2005, vol. 391, no. 2, pp. 167–175.

    Article  CAS  Google Scholar 

  33. Raafat, D., and Sahl, H.G., Microb. Biotechnol., 2009, vol. 2, no. 2, pp. 186–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang, S.L., Liang, T.W., and Yen, Y.H., Carbohydr. Polym., 2011, vol. 84, no. 2, pp. 732–742.

    Article  CAS  Google Scholar 

  35. Mussatto, S.I. and Manchilla, I.M., Carbohydr. Polym., 2007, vol. 68, no. 3, pp. 587–597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sinha.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, S., Chand, S. & Tripathi, P. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds. Appl Biochem Microbiol 50, 125–133 (2014). https://doi.org/10.1134/S0003683814020173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814020173

Keywords

Navigation