Skip to main content
Log in

Polyelectrolyte complexes of lactoferrin and pH-sensitive microparticles on their basis

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Suspensions of insoluble polyelectrolyte complexes of dextran sulfate (DS) of different molecular masses with lactoferrin (LF) have been fabricated and characterized. The encapsulation efficiency of LF and DS in a complex at pH 3.0 and 4.0 was assessed, and particles were characterized by their sizes and ζ-potential. The complexes formed at pH 3.0 differed by a higher stability level. The interaction with DS resulted in a twofold decrease in the antioxidant activity of LF, although the formation of complexes was not accompanied by conformational changes in LF molecules according to IR-spectrometry data. Microencapsulation was carried out by treating the suspensions with negatively charged LF-DS complexes with protamine and chitosane solutions with different molecular masses. The composition, size, and the ζ-potential of interaction products were assessed which allowed us to select the conditions for the preparation of pH-sensitive polyelectrolyte microparticles loaded with LF which would be able to gradually release glycoprotein under conditions that model the passage through the gastrointestinal tract of humans. These data indicate that this approach is promising for the creation of pH-sensitive biopolyelectrolytes suitable for oral administration of LF to target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lönnerdal, B. and Iyer, S., Annu. Rev. Nutr., 1995, vol. 15, pp. 93–110.

    Article  PubMed  Google Scholar 

  2. Gonzalez-Chavez, S.A., Arevalo-Gallegos, S., and Rascon-Cruz, Q., Int. J. Antimicrob. Agents, 2009, vol. 33, p. 301.

    PubMed  Google Scholar 

  3. Borzenkova, N.V., Balabushevich, N.G., and Larionova, N.I., Biofarm. Zh., 2010, vol. 2, no. 3, pp. 3–19.

    CAS  Google Scholar 

  4. Baker, H.M. and Baker, E., N, BioMetals, 2004, vol. 17, pp. 209–216.

    Article  CAS  PubMed  Google Scholar 

  5. Metz-Boutigue, M.N., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J., and Jolles, P., Eur. J. Biochem., 1984, vol. 145, no. 3, pp. 659–676.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, B.F., Baker, H.M., Dodson, E.J., Norris, G.E., Rumball, S.V., Waters, J.M., and Baker, E.N., Proc. Nat. Acad. Sci. U.S.A., 1987, vol. 84, pp. 1769–1773.

    Article  CAS  Google Scholar 

  7. Sanchez, L., Calvo, M., and Brock, J.H., Archiv. Disease Childh., 1992, vol. 67, pp. 657–661.

    Article  CAS  Google Scholar 

  8. La, A.A., Puerta, A.G.H., Velazquez, W.T., Alfonso, A.R., Sanchez, H.G., Machin, J.H., Lahens, A.C., Gonzalez, G.S., and Brock, J.H., Biotecnol. Aplicada, 2000, vol. 17, pp. 177–182.

    Google Scholar 

  9. Steijns, J.M. and van Hooijdonk, A.C.M., Br. J. Nutr., 2000, vol. 84, pp. 11–S17.

    Article  Google Scholar 

  10. Kanwar, J.R., Samarasinghe, R.M., Rakesh, SehgalR., Rupinder, K., and Kanwar, R.K., J. Cancer. Sci. Ther., 2012, vol. 4, pp. 31–42.

    CAS  Google Scholar 

  11. Pang, Z., Feng, L., Hua, R., Chen, J., Gao, H., Pan, S., Jiang, X., and Zhang, P., Mol. Pharm., 2010, vol. 7, no. 6, pp. 1995–2005.

    Article  CAS  PubMed  Google Scholar 

  12. Elfinger, M., Mauckscha, C., and Rudolpha, C., Biomaterials, 2007, vol. 28, pp. 3448–3455.

    Article  CAS  PubMed  Google Scholar 

  13. Hu, K., Li, J., Shen, Y., Lu, W., Gao, X., Zhang, Q., and Jiang, X., J. Control. Release, 2009, vol. 134, pp. 55–61.

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu, H., BioMetals, 2004, vol. 17, pp. 343–347.

    Article  CAS  PubMed  Google Scholar 

  15. Bengoechea, C., Jones, O.G., Guerrer, A., and McClements, D.J., Food Hydrocolloids, 2011, vol. 25, no. 5, pp. 1227–1232.

    Article  CAS  Google Scholar 

  16. Mestechkina, N.M., Bezborodova, O.A., Il’ina, A.V., Levov, A.N., Kleimenov, S.Yu., Nemtsova, E.R., Yakubovskaya, R.I., Shcherbukhin, V.D., and Varlamov, V.P., Appl. Biochem. Microbiol., 2011, vol. 47, no. 6, pp. 640–647.

    Article  CAS  Google Scholar 

  17. Anema, S.G. and (Kees) de Kruif, C.G., Soft Matter, 2012, vol. 8, pp. 4471–4478.

    Article  CAS  Google Scholar 

  18. Ishikado, A., Imanaka, H., Takeuchi, T., Harada, E., and Makino, T., Biol. Pharm. Bull., 2005, vol. 28, no. 9, pp. 1717–1721.

    Article  CAS  PubMed  Google Scholar 

  19. Ishikado, A., Imanaka, H., Kotani, M., Fujita, A., Mitsuishi, Y., Kanemitsu, T., Tamura, Y., and Makino, T., Biofactors, 2004, vol. 21, pp. 69–72.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, F.Y.J., Chen, W.-J., Lee, W.Y., Lo, S.T., Lee, T.W., and Lo, J.M., Int. J. Mol. Sci., 2013, vol. 14, pp. 2862–2874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Onishi, H., Machida, Y., and Koyama, K., Drug Dev. Ind. Pharm., 2007, vol. 33, pp. 641–647.

    Article  CAS  PubMed  Google Scholar 

  22. Lorenzis, E., Semeraro, C., Blasi, M.D., Mita, G., and Poltronieri, P., Food Biophysics, 2012, vol. 3, no. 2, pp. 169–173.

    Article  Google Scholar 

  23. Koyama, K., Onishi, H., Sakata, O., and Machida, Y., Yakugaku Zasshi, 2009, vol. 129, no. 12, pp. 1507–14.

    Article  CAS  PubMed  Google Scholar 

  24. Onishi, H., Koyama, K., Sakata, O., and Machida, Y., Drug Dev. Ind. Pharm., 2010, vol. 36, pp. 879–884.

    Article  CAS  PubMed  Google Scholar 

  25. Kanwar, J.R., Mahidhara, G., and Kanwar, R.K., Nanomedicine, 2012, vol. 7, no. 10, pp. 1521–1550.

    Article  CAS  PubMed  Google Scholar 

  26. Balabushevich, N.G., Izumrudov, V.A., and Larionova, N.I., Polymer Science, 2012, vol. 54, no. 7, pp. 540–551.

    CAS  Google Scholar 

  27. Balabushevitch, N.G., Sukhorukov, G.B., Moroz, N.A., Larionova, N.I., Volodkin, D.V., Donath, E., and Mohwald, H., Biotechnol. Bioengin., 2001, vol. 76, no. 3, pp. 207–213.

    Article  CAS  Google Scholar 

  28. Balabushevich, N.G. and Larionova, N.I., Biochemistry (Moscow), 2004, vol. 69, no. 7, pp. 757–762.

    Article  CAS  Google Scholar 

  29. Balabushevich, N.G., Lebedeva, O.V., Vinogradova, O.I., and Larionova, N.I., J. Drug Delivery Sci. Tech., 2006, vol. 16, no. 4, pp. 315–319.

    CAS  Google Scholar 

  30. Balabushevich, N.G., Izumrudov, V.A., Zorov, I.N., and Larionova, N.I., Biofarm. Zh., 2010, vol. 2, no. 1, pp. 35–41.

    CAS  Google Scholar 

  31. Balabushevich, N.G., Pechenkin, M.A., Zorov, I.N., Shibanova, E.D., and Larionova, N.I., Biochemistry (Moscow), 2011, vol. 76, no. 3, pp. 327–331.

    Article  CAS  Google Scholar 

  32. Pechenkin, M.A., Balabushevich, N.G., Zorov, I.N., Staroseltseva, L.K., Mikhalchik, E.V., Izumrudov, V.A., and Larionova, N.I., J. Bioequival. Bioavailability, 2011, vol. 3, no. 10, pp. 244–250.

    Article  CAS  Google Scholar 

  33. Pechenkin, M.A., Balabushevich, N.G., Zorov, I.N., Izumrudov, V.A., Klyachko, N.L., Kabanov, A.V., and Larionova, N.I., Pharm. Chem. J., 2013, vol. 47, no. 1, pp. 62–69.

    Article  CAS  Google Scholar 

  34. Avdeef, A., Current Topics in Med. Chem, 2001, vol. 1, pp. 277–351.

    Article  CAS  Google Scholar 

  35. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    CAS  PubMed  Google Scholar 

  36. Dubois, M., Gilse, A., Hamilton, S.K., Robers, P.A., and Smith, F., Anal. Chem., 1956, vol. 28, no. 3, pp. 350–356.

    Article  CAS  Google Scholar 

  37. Larionova, N.I., Zubaerova, D.K., Guranda, D.T., Pechyonkin, M.A., and Balabushevich, N.G., Carbohydr. Polymers, 2009, vol. 75, pp. 724–727.

    Article  CAS  Google Scholar 

  38. Kim, R.S. and LaBella, F.S., Can. J. Physiol. Pharmacol., 1987, vol. 65, no. 7, pp. 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  39. Gutteidge, I.M.C., Paterson, S.K., Segal, A.W., and Halliwell, B., Biochem. J., 1981, vol. 199, no. 1 P, pp. 259–261.

    Google Scholar 

  40. Britigan, B.E., Rosen, G.M., Thompson, B.Y., Chai, Y., and Cohen, M.S., J. Biol. Chem., 1986, vol. 261, no. 36, pp. 17026–17032.

    CAS  PubMed  Google Scholar 

  41. Baker, E.N. and Baker, H.M., Biochimie, 2009, vol. 91, pp. 3–10.

    Article  CAS  PubMed  Google Scholar 

  42. Hadden, J.M., Bloemendal, M., Haris, P.I., Srai, S.K.S., and Chapman, D., Biochim. Biophys. Acta, 1994, vol. 1205, pp. 59–67.

    Article  CAS  PubMed  Google Scholar 

  43. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR- i mass-spektroskopii v organicheskoi khimii (Application of UV, IR, NMR, and Mass Spectrometry in Organic Chemistry), Moscow: Izd. Mosk. Gos. Univ., 1979.

    Google Scholar 

  44. Anderson, B.F., Baker, H.M., Norris, G.E., Rice, D.W., and Baker, E.N., J. Mol. Biol., 1989, pp. 711–734.

    Google Scholar 

  45. Bonazzola, C. and Calvo, E.J., A, Langmuir, 2003, vol. 19, pp. 5279–5286.

    Article  CAS  Google Scholar 

  46. Balabushevich, N.G., Pechenkin, M.A., Shibanova, E.D., Volodkin, D.V., and Mikhalchik, E.V., Macromol. Biosci., 2013, vol. 13, no. 10, pp. 1379–1388.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Balabushevich.

Additional information

Original Russian Text © N.G. Balabushevich, N.V. Borzenkova, V.A. Izumrudov, N.I. Larionova, O.A. Bezborodova, E.R. Nemtsova, R.I. Yakubovskaya, 2014, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2014, Vol. 50, No. 2, pp. 232–240.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balabushevich, N.G., Borzenkova, N.V., Izumrudov, V.A. et al. Polyelectrolyte complexes of lactoferrin and pH-sensitive microparticles on their basis. Appl Biochem Microbiol 50, 206–213 (2014). https://doi.org/10.1134/S0003683814020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814020045

Keywords

Navigation