Skip to main content
Log in

The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium

  • Physical and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The effect of the size, shape, and structure of gold and silver nanoparticles on the dependence of their extinction and integral scattering spectra on the dielectric environment has been investigated. Calculations were performed using the Mie theory for spheres and nanoshells and the T-matrix method for chaotically oriented bispheres, spheroids, and s cylinders with hemispherical ends. The sensitivity of plasmon resonances to variations in the refractive index of the environment in the range 1.3–1.7 for particles of different equivolume size, as well as to variations in the thickness of the metal layer of nanoshells, was studied. For nanoparticles with an equivolume diameter of 15 nm, the maximal shifts of plasmon resonances due to variation in the refractive index of the environment are observed for bispheres and the shifts decrease in the series nanoshells, s cylinders or spheroids, and spheres. For particles 60 nm in diameter, the largest shifts of plasmon resonances occur for nanoshells and the shifts decrease in the series bispheres, s cylinders or spheroids, and spheres. All other conditions being the same, silver nanoparticles are more sensitive to the resonance tuning due to a change in the dielectric environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003).

    Article  MathSciNet  Google Scholar 

  2. W. J. Parak, D. Gerion, T. Pellegrino, et al., Nanotechnology 14, R15 (2003).

    Article  ADS  Google Scholar 

  3. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, and L. A. Dykman, Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv, and M. I. Mishchenko (Kluwer, Dordrecht, 2004), p. 265.

    Google Scholar 

  4. Nanobiotechnology: Concept, Applications, and Perspectives, Ed. by C. M. Niemeyer and C. A. Mirkin (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  5. M.-Ch. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  6. Ch. M. Niemeyer, B. Ceyhan, and P. Hazarika, Angew. Chem. Int. Ed. Engl. 42, 5766 (2003).

    Google Scholar 

  7. J. J. Storhoff, S. S. Marla, P. Bao, et al., Biosens. Bioelectron. 19, 875 (2004).

    Article  Google Scholar 

  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  9. U. Kreibig and M. Volmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  10. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2004).

    Google Scholar 

  11. N. G. Khlebtsov, L. A. Dykman, V. A. Bogatyrev, and B. N. Khlebtsov, Kolloidn. Zh. 65, 552 (2003).

    Google Scholar 

  12. N. G. Khlebtsov, V. A. Bogatyrev, B. N. Khlebtsov, et al., Kolloidn. Zh. 65, 679 (2003).

    Google Scholar 

  13. Y. Sun and Y. Xia, Analyst 128, 686 (2003).

    Google Scholar 

  14. N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, Opt. Spektrosk. 97, 105 (2004) [Opt. Spectrosc. 97, 97 (2004)].

    Google Scholar 

  15. C. M. Niemeyer, Angew. Chem. Int. Ed. Engl. 40, 4128 (2001).

    Google Scholar 

  16. N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

    Article  Google Scholar 

  17. J. Haes and R. P. van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).

    Google Scholar 

  18. J. C. Riboh, A. J. Haes, A. D. McFarland, et al., J. Phys. Chem. B 107, 1772 (2003).

    Article  Google Scholar 

  19. V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, et al., Kolloidn. Zh. 64, 745 (2002).

    Google Scholar 

  20. G. Raschke, S. Kowarik, T. Franzl, et al., Nano Lett. 3, 935 (2003).

    Article  Google Scholar 

  21. A. D. McFarland and R. P. van Duyne, Nano Lett. 3, 1057 (2003).

    Article  Google Scholar 

  22. N. Stich, A. Gandhum, V. Matyushin, et al., J. Nanosci. Nanotechnol. 2, 375 (2002).

    Article  Google Scholar 

  23. J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 485 (2003).

    Article  Google Scholar 

  24. W. C. W. Chan, D. J. Maxwell, X. Gao, et al., Curr. Opin. Biotechnol. 13, 40 (2002).

    Article  Google Scholar 

  25. N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, in Electromagnetic and Light Scattering by Nonspherical Particles: Theory and Applications, Ed. by F. Obelleiro, J. L. Rodriguez, and Th. Wriedt (Vigo Univ. Press, Vigo, Spain, 1999), p. 43.

    Google Scholar 

  26. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al., J. Am. Chem. Soc. 122, 4640 (2000).

    Article  Google Scholar 

  27. L. A. Dykman, Ya. M. Krasnov, V. A. Bogatyrev, and N. G. Khelbtsov, Proc. SPIE 4241, 37 (2001).

    ADS  Google Scholar 

  28. D. Roll, J. Malicka, I. Gryczynski, et al., Anal. Chem. 75, 3440 (2003).

    Article  Google Scholar 

  29. X. Liu, H. Yuan, D. Pang, and R. Cai, Spectrochim. Acta A 60, 385 (2004).

    Google Scholar 

  30. H. Xu and M. Käll, Sens. Actuators B 87, 244 (2002).

    Article  Google Scholar 

  31. E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).

    Article  ADS  Google Scholar 

  32. S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).

    Google Scholar 

  33. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. van Duyne, J. Am. Chem. Soc. 123, 1471 (2001).

    Article  Google Scholar 

  34. N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105, 4065 (2001).

    Article  Google Scholar 

  35. S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).

    Article  Google Scholar 

  36. S. Oldenburg, R. D. Averitt, S. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).

    Article  Google Scholar 

  37. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, Phys. Rev. B 66, 155 431 (2002).

    Google Scholar 

  38. L. R. Hirsch, J. B. Jackson, A. Lee, et al., Anal. Chem. 75, 2377 (2003).

    Article  Google Scholar 

  39. L. R. Hirsch, R. J. Stafford, J. A. Bankson, et al., Proc. Natl. Acad. Sci. USA 23, 13 549 (2003).

    Google Scholar 

  40. D. W. Mackowski, J. Opt. Soc. Am. A 11, 2851 (1994).

    ADS  Google Scholar 

  41. R. Jin, Y. W. Cao, C. A. Mirkin, et al., Science 294, 1901 (2001).

    ADS  Google Scholar 

  42. C. L. Haynes and R. P. van Duyne, J. Phys. Chem. B 105, 5599 (2001).

    Article  Google Scholar 

  43. B. T. Draine, Light Scattering by Nonspherical Particles, Ed. by M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Academic, San Diego, 2000), p. 131.

    Google Scholar 

  44. E. Hao, S. Li, R. C. Bailey, et al., J. Phys. Chem. B 108, 1224 (2004).

    Google Scholar 

  45. http://www-ece.rice.edu/∼halas/; http://www.physics.ucsb.edu/∼eprodan/.

  46. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, J. Colloid Interface Sci. 180, 436 (1996).

    Article  Google Scholar 

  47. P. B. Johnson and R. W. Christy, Phys. Rev. B 12, 4370 (1973).

    Google Scholar 

  48. E. Prodan and P. Nordlander, Chem. Phys. Lett. 360, 325 (2002).

    Article  Google Scholar 

  49. N. G. Khlebtsov, Opt. Spektrosk. 88, 656 (2000) [Opt. Spectrosc. 88, 594 (2000)].

    Google Scholar 

  50. N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Mel’nikov, Kolloidn. Zh. 62, 844 (2000).

    Google Scholar 

  51. A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460 (2000).

    Article  Google Scholar 

  52. E. Hao, R. C. Bailey, G. C. Schatz, et al., Nano Lett. 4, 327 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 98, No. 1, 2005, pp. 83–90.

Original Russian Text Copyright © 2005 by Khlebtsov, Trachuk, Mel’nikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, N.G., Trachuk, L.A. & Mel’nikov, A.G. The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Opt. Spectrosc. 98, 77–83 (2005). https://doi.org/10.1134/1.1858043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1858043

Keywords

Navigation