Skip to main content
Log in

Optical properties of nanodiamond layers

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Thin ultradisperse diamond (UDD) layers deposited from a water suspension are studied by optical and x-ray photoelectron spectroscopy (XPS). The effective band gap determined by the 104-cm−1 criterion for ozone-cleaned UDD is 3.5 eV. The broad structureless photoluminescence band (380–520 nm) is associated with radiative recombination through a system of continuously distributed energy levels in the band gap of diamond nanoclusters. The optical absorption of the material at 250–1000 nm originates from absorption on the disordered nanocluster surface containing threefold-coordinated carbon. The surface of UDD clusters subjected to acid cleaning contains nitrogen-oxygen complexes adsorbed in the form of NO 3 nitrate ions. Annealing in a hydrogen atmosphere results in desorption of the nitrate ions from the cluster surface. The evolution of the oxygen (O1s) and nitrogen (N1s) lines in the XPS spectra under annealing of a UDD layer is studied comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Kuznetsov, I. L. Zilberberg, Yu. V. Butenko, et al., J. Appl. Phys. 86(2), 863 (1999).

    Article  ADS  Google Scholar 

  2. Jian Chen, S. Z. Deng, Jun Chen, et al., Appl. Phys. Lett. 74(24), 3651 (1999).

    ADS  Google Scholar 

  3. A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, et al., Fiz. Tverd. Tela (St. Petersburg) 39(6), 1125 (1997) [Phys. Solid State 39, 1007 (1997)].

    Google Scholar 

  4. A. E. Aleksenskii, M. V. Baidakova, V. Yu. Davydov, et al., in Proceedings of the Fifth International Symposium on Diamond Materials, Paris, 1997, Ed. by J. L. Davidson, W. D. Brown, A. Gicquuel, B. V. Spitsyn, and J. C. Angus (Electrochemical Society, Pennington, 1998); Proc.—Electrochem. Soc. 97-32, 58 (1998).

    Google Scholar 

  5. Shengfu Ji, Tianlai Jiang, Kang Xu, and Shuben Li, Appl. Surf. Sci. 133, 231 (1998).

    Article  Google Scholar 

  6. E. Maillard-Schaller, O. M. Kuettel, L. Diederich, et al., Diamond Related Mater. 8, 805 (1999).

    Google Scholar 

  7. Y. K. Chang, H. H. Hsieh, W. P. Pong, et al., Phys. Rev. Lett. 82(26), 5377 (1999).

    Article  ADS  Google Scholar 

  8. Tzu-Chi Kuo, R. L. McCreery, and G. M. Swain, Electrochem. Solid-State Lett. 2(6), 288 (1999).

    Article  Google Scholar 

  9. G. Francz, P. Kania, G. Gantner, et al., Phys. Status Solidi A 154, 91 (1996).

    Google Scholar 

  10. A. I. Lyamkin, E. A. Petrov, A. P. Ershov, et al., Dokl. Akad. Nauk SSSR 302, 611 (1988).

    Google Scholar 

  11. A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, and V. I. Siklitskii, Fiz. Tverd. Tela (St. Petersburg) 41(4), 740 (1999) [Phys. Solid State 41, 668 (1999)].

    Google Scholar 

  12. A. E. Aleksenskii, V. Yu. Osipov, N. A. Kryukov, et al., Pis’ma Zh. Tekh. Fiz. 23(22), 39 (1997) [Tech. Phys. Lett. 23, 874 (1997)].

    Google Scholar 

  13. J. E. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Eden Prairie, Physical Electronics, 1992).

  14. Y. Lifshitz, Diamond Related Mater. 8, 1659 (1999).

    Google Scholar 

  15. H. Hirai, M. Terauchi, M. Tanaka, and K. Kondo, Diamond Related Mater. 8, 1703 (1999).

    Google Scholar 

  16. M. V. Baidakova, A. Ya. Vul’, V. I. Siklitskii, and N. N. Faleev, Fiz. Tverd. Tela (St. Petersburg) 40(4), 776 (1998) [Phys. Solid State 40, 715 (1998)].

    Google Scholar 

  17. P. Keblinski, D. Wolf, S. R. Phillpot, and H. Gleiter, J. Mater. Res. 13(8), 2077 (1998).

    ADS  Google Scholar 

  18. P. Keblinski, D. Wolf, S. R. Phillpot, and H. Gleiter, MRS Bull., No. 9, 36 (1998).

  19. M. E. Kompan, E. I. Terukov, S. K. Gordeev, et al., Fiz. Tverd. Tela (St. Petersburg) 39(12), 2156 (1997) [Phys. Solid State 39, 1928 (1997)].

    Google Scholar 

  20. R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).

    ADS  Google Scholar 

  21. M. J. Lipp, V. G. Baonza, W. J. Evans, and H. E. Lorenzana, Phys. Rev. B 56(10), 5978 (1997).

    Article  ADS  Google Scholar 

  22. T. Thorigen, G. Lippold, V. Riede, et al., Thin Solid Films 348, 103 (1999).

    Google Scholar 

  23. E. D’Anna, M. L. de Giorgi, A. Luches, et al., Thin Solid Films 347, 72 (1999).

    Google Scholar 

  24. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1963; Mir, Moscow, 1966), p. 94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 43, No. 1, 2001, pp. 140–145.

Original Russian Text Copyright © 2001 by Aleksenski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Osipov, Vul’, Ber, Smirnov, Melekhin, Adriaenssens, Iakoubovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksenskii, A.E., Osipov, V.Y., Vul’, A.Y. et al. Optical properties of nanodiamond layers. Phys. Solid State 43, 145–150 (2001). https://doi.org/10.1134/1.1340200

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1340200

Keywords

Navigation