Characterization and Expression of Two Avirulence Genes Cloned from *Pseudomonas syringae* pv. glycinea

S. TAMAKI,¹ D. DAHLBECK,² B. STASKAWICZ,² and N. T. KEEN^{1*}

Department of Plant Pathology, University of California, Riverside, California 92521,¹ and Department of Plant Pathology, University of California, Berkeley, California 94720²

Received 14 March 1988/Accepted 22 July 1988

Two avirulence genes, *avrB* and *avrC*, from race 0 of *Pseudomonas syringae* pv. *glycinea*, were sequenced and found to encode single protein products of 36 and 39 kilodaltons, respectively. The proteins had neither recognizable signal peptide sequences nor significant stretches of hydrophobic amino acids that might indicate membrane association. Both *avrB* and *avrC* had relatively low position 3 and overall G+C contents, which suggests that they may have been recently introduced into *P. syringae* pv. *glycinea*. The deduced amino acid sequences of the proteins encoded by *avrB* and *avrC* shared 42% identical amino acids. However, when introduced into race 4 of *P. syringae* pv. *glycinea*, each gene directed a unique pattern of hypersensitive reactions on several differential soybean cultivars. The *avrC* protein was overproduced in *Escherichia coli* cells and deposited as insoluble inclusion bodies in the cell cytoplasm. The *avrC* protein could be solubilized with urea-octyl glucoside treatment, but neither the solubilized protein nor the intact inclusion bodies elicited a hypersensitive reaction in soybean leaves.

Pseudomonas syringae pv. glycinea is the causal agent of bacterial blight of soybeans. This host-pathogen system has proven useful for the study of mechanisms that determine hypersensitive resistance and race specificity. Several races of the pathogen have been defined by their unique patterns of incompatible and compatible reactions on a series of differential soybean cultivars (1), and one plant resistance gene has been defined by classical genetic crosses (16). The dominant resistance gene, Rpg1, corresponds to a single avirulence gene, avrB, which occurs in two different races of P. syringae pv. glycinea and genetically defines a gene-forgene interaction (21). The pathogen multiplies rapidly in inoculated leaves of a compatible soybean cultivar, resulting in water-soaked lesions. An incompatible plant reaction results in a rapid, necrotic, hypersensitive reaction (HR), followed after several hours by the accumulation of phytoalexins at the infection site and the restriction of pathogen multiplication (8, 13).

Pathogen avirulence genes corresponding to single dominant disease resistance genes in plant hosts have been demonstrated in many studies (5). The genetic complementarity of avirulence genes and resistance genes may further denote the existence of a corresponding biochemical complementarity wherein avirulence gene products or their catalytic products are recognized as elicitors by putative plant receptors encoded by plant disease resistance genes (7). To test this hypothesis and to study the basis of gene-for-gene complementarity, we began to clone avirulence genes from bacterial pathogens, characterize these genes, and investigate the properties of their protein products. We initially cloned (20) and sequenced (17) an avirulence gene from race 6 of P. syringae pv. glycinea called avrA. More recently, Staskawicz et al. (21) cloned two additional avirulence genes, designated avrB and avrC, from race 0 of *P*. syringae pv. glycinea. One of these genes, avrB, was identical or closely related to a single avirulence gene detected in race 1 of *P. syringae* pv. glycinea. In this paper,

MATERIALS AND METHODS

Bacterial strains and plasmids. A P. syringae pv. glycinea race 4 strain naturally resistant to ampicillin and selected for resistance to rifampin (Table 1) was maintained on King medium B (KMB) agar containing 100 µg of rifampin and 50 µg of ampicillin per ml and was grown at 28°C. E. coli cells were generally cultured on LB broth or agar media supplemented with appropriate antibiotics. Plasmid clones of pRK415 or pDSK519 (Table 1) were conjugated from E. coli into P. syringae pv. glycinea race 4 rif amp cells via triparental matings with the helper plasmid pRK2013 (4). Mating mixtures were allowed to incubate at 28°C for 12 h on KMB agar and were plated onto KMB agar containing 100 µg of rifampin, 50 µg of ampicillin, and 25 µg of tetracycline per ml. Colonies which grew on the final medium were restreaked, and single-colony isolates were used for plant inoculations. Plasmids containing avr genes and associated DNA were designated pAVR, which we have registered with the Plasmid Registry Center (12).

Plant culture and inoculation methods. Soybean plants were grown from seed as previously described (13) in plant growth chambers at 22°C. Bacteria were grown overnight on KMB agar plates or in KMB broth supplemented with appropriate antibiotics at 28°C. Bacterial cells were suspended in water and adjusted to absorbance values of 1.0 or 0.1 (corresponding to ca. 2×10^9 and 2×10^8 CFU/ml, respectively). Primary soybean leaves which were nearly fully expanded were inoculated with a Hagborg apparatus (13). Solubilized protein preparations were infiltrated with the same apparatus. Plants were maintained in growth chambers at 22°C in all cases, and reactions were visually monitored daily for 5 days.

Recombinant DNA techniques. DNA-modifying enzymes were generally purchased from New England BioLabs, Inc.,

we present the DNA sequences of the *avrB* and *avrC* genes as well as describe overexpression of the *avrC* gene in *Escherichia coli* cells.

^{*} Corresponding author.

Bacterial strains, plasmids, or phage	Description	Reference or source
Bacteria		
P. syringae pv.		13
glycinea race 4 rif		
amp		
E. coli		
DH5a	endA1 hsdR17 ($r_{K}^{-}m_{K}^{+}$) F ⁻ supE44 thi-1 λ^{-} recA1 gyrA relA1 φ 80dlacZ Δ M15 Δ (lacZYA-argF)U169	BRL"
JM-109	recAl Δ(lac pro) endAl gyrA96 thi-l hsdR17 supE44 relAl F' traD36 proAB ⁺ lacI ^o ZΔM15	23
MV1193	$\Delta(lac-proAB)$ thi rpsL endA sbcB15 hspR4 $\Delta(srl-recA)$ 306::Tn10 (Tet ^r) [F':traD36 nroAB lacFZAM15]	Messing, unpublished data
HB101	F^- hsdS20 (hsdR hsdM) recA13 ara-14 proA2 lacY1 galK2 rpsL20 (Str ²) xyl-5 mtl 1 supE4() =	14
BMH 71-18	$\Delta(lac \ pro)$ F' lacl ^Q Z Δ M15-pro ⁺	19
Plasmids		
nRK415	Shuttle vector based on nRK404	Keen et al. ^b
pDSK 519	Shuttle vector based on pRSF1010	Keen et al.
pUC18 pUC19	Cloning vectors	23
	Notice and all (10 with the M12 replication origin	23
	plot and plot is with the M13 replacation organ	Voor ot ol
pUC129	potti 9 with additional polylinker cloning sites	
pUR292	lacz tusion protein vector	19
pPSG0002	2.2-kb Pstl fragment cloned from race 0 of P. syringae pv. glycinea containing the	21
pPSG0101	2.7-kb PstI fragment cloned from race 0 of P. syringae pv. glycinea containing the avrC gene	21
pAVRB1	1,287-bp BgII fragment from pPSG0002 cloned in opposite orientation to promoter in pUC118	This study
pAVRB2	Same as pAVRB1 except in downstream orientation to vector <i>lac</i> promoter	This study
nAVRCn	2.7-kb PstI insert from pPSG0101 cloned in PstI site of pUC119 downstream of	This study
privilep	vector promoter	
pAVRC1	Sequencing deletion from pPSG0101 including 91 bp 5' to start codon of <i>avrC</i> gene and continuing to downstream <i>PstI</i> site of pPSG0101	This study
pAVRC4	1.2-kb fragment from 91 bp upstream of ATG start codon to <i>Not</i> I site downstream of the ORF; sequencing deletion was used for 5' end of fragment; fragment was blunted with S1 nuclease and cloned downstream of vector promoter in <i>Sma</i> I site of pUC19	This study
pAVRC2	Same construct as pAVRC4 except cloned in pUC119	This study
pAVRC3	Same as pAVRC2 except opposite orientation	This study
pAVRC11	HindIII fragment from pAVRC4 cloned into pUR292 in antiorientation, leading to truncated fusion protein	This study
pAVRC12	HindIII fragment from pAVRC4 cloned into pUR292 in orientation leading to lacZ-avrC fusion protein	This study
pAVRC16	Fragment from leftward <i>PstI</i> site of pPSG0101 to unique <i>NotI</i> site, containing <i>avrC</i> : cloned downstream of promoter in pUC129	This study
pAVRC19	ORF 2 of pPSG0101 from <i>Bg</i> /II site at base 1591 to <i>Bg</i> /II site at base 2494, cloned into <i>Bg</i> /III site of pUC119 (opposite orientation to vector promoter)	This study
pAVRC20	Same construct as pAVRC19 except Bg/II insert was cloned downstream of vector promoter	This study
Phage M13mp18, M13mp19	Phage for generation of single-strand DNA	23

TABLE 1. Bacterial strains, plasmids, and phage used in this study

^a BRL, Bethesda Research Laboratories.

^b N.T. Keen, S. Tamaki, D. Kobayashi, and D. Trollinger, Gene, in press.

Beverly, Mass., or Bio-Rad Laboratories, Richmond, Calif. Subcloning was generally performed on low-melting-point agarose gels by the method of Crouse et al. (2). Other general methods were as described by Maniatis et al. (14) or Keen and Tamaki (9).

DNA sequencing. *PstI* fragments coding *avrB* or *avrC* were used for BAL 31 deletions, and these deletions were then subcloned in phage M13 and sequenced by the dideoxy-chain termination method (3). Both strands were sequenced to confirm data. DNA sequence data were analyzed by the computer programs of Pustell and Kafatos (18) as well as by

the BIONET system supplied through Intelligenetics Corp., Mountain View, Calif.

Protein electrophoresis. E. coli cells carrying desired plasmids were grown overnight at 37°C in 15 ml of LB broth containing 50 µg of ampicillin with or without 1 mM isopropyl- β -D-thiogalactopyranoside (IPTG). Bacterial cells were pelleted by centrifugation for 5 min at 5,000 × g and suspended in 2 ml of water per 15 ml of original culture; 50 µl of this suspension was mixed with 50 µl of 2.5× Laemmli sample solution (10). The mixture was boiled for 5 min, and samples were electrophoresed on 10% acrylamide gels which

Pst I	10			20		3	0		40		1	50			60		10	030			1040		10	50		I	iuou #			1070	,		
CT GCA GCI	GTT	GCA (CAG (JTA TTI	GAC G	ng c	og ga	A GCT	CIG	GTT G	oc ga	A OGT	GTA	GTG	TTT	GAT A Asp T	CT (hr (GAA 1	TAT Tyr	CTG Leu	AGA GAT Arg Asp	CGA Arg	GTA Val	000 (Ala	CAT His	CTG Leu	AGA Arg	ACA Thr	GAG Glu	TTG Leu	GGC G Gly A	KA A la L	AA GCT ys Ala
	70			80		9	0		100		1	10			120		10	090			1100		11	10		1	1120			1130)		1140
GAC CGC	CCA	GGA (rog <i>i</i>	NGG TGC	CGC AL	in a c	ica gci	A TTT	TGG	tga o	GG AC	t CCA	CTT	OGA	TGT	CTT A Leu L	AA (ys (CAG (Sin)	CAT His	TIG Leu	CAG AGA Gln Arg	TAC Tyr	AAT Asn	e CCT (Pro	jat Asp	AGA Arg	ATA Ile	GAC Asp	CAT His	ACG Thr	AAC G Asn A	CT T Ua S	CC TAT er Tyr
	130			140		15	ю		160		1	7 0			180		11	150			1160		11	70		1	1180			1190)		1200
OGC GTA	AGC	00C (CT (+ CCT CAA	GC T	AC C	KOG ATN	C GTA	# Aga	aog g	oc ga	# T TIG	CAG	œ	₽ CAG	TTA O Leu P	cc #	ATA I De 1	ATA Ile	AAA Lys	# GAT CAT Asp His	TTA Leu	AAT Asn	e GAT Asp	CTT Leu	TAC Tyr	aga Arg	CAA Gln	GCA Ala	₽ ATA Ile	TCT I Ser S	TOC G Ser A	AT TTA sp Leu
	190			200		21	0		220	Ba	IT 2	30		:	240		12	210			1220		12	30		1	1240			1250)		1260
GCT GOO	CTG	TTC	atg i	ACC AAC	C ATC G	T A	i TG Gα	GTG	ATG	00G T	AC AO	<u>*</u> c ccc	GCT	TTA	* TGG	AGC C Ser G	AA (ln /	30C (Ala (GAA Glu	TTG Leu	ATA AGC Ile Ser	CTG Leu	ATA Ile	GCC Ala	OGT Arg	ACC Thr	CAT His	10G Trp	TGG Tr•p	GCT Ala	GOG A Ala S	KGT G Ser A	CA ATG la Met
	250			260		2	o		280		2	90		:	300		12	270			1280		12	90		1	1300			1310)		1320
GOC TAC	• TTA	ACA	ACA (e ici	COC A	1 33 (iaa go	G TTT	CTT	gag g	og ca	• G TTA	TOG	ATG	# TAA	CCT G Pro A	AC (sp (CAA . Gln .	AGA Arg	GGT Gly	AGT GCT Ser Ala	GCT Ala	AAG Lys	# GCC Ala	GAG Glu	TTT Phe	GCA Ala	GCT Ala	AGA Arg	GOC Ala	ATA G Ile #	CT A	er Ala
	310			320		33	30		340		3	50			360		13	330			1340		13	850		1	1360			1370)		1380
000 000	• 000	CAT	AGT (a Tio	G OCA A'	rt 1) TT GG	g cac	+ TCA	œt g	ga ac	• C TAA	TIC	AGG	# GTA	CAT G His G	GT / ly]	ATA (De (GAG Glu	CTC Leu	e COG CCT Pro Pro	TTT Phe	CGA Arg	AAT Asn	GIY	AAC Asn	GTT Val	TOG Ser	GAT Asp	₽ ATA Ile	GAA G Glu A	XOG A Lla M	TG CTC let Leu
	370			380		39	0		400		4	10		,	420		13	³⁹⁰ e	Eco	RI	1400		14	10 H	ind	1 Ш ¹	1420			1430)		1440
AAT GOO	ACA	CAG	CTC	AAG CA/	A ACT A	CAC	ag ca	C AAC	ATA	TTA G	og tt	T ATG	; TGG	TOG	TT T	AGC () Ser ()	GA (ly (GAG Glu	GAG Glu	GAA Glu	TTC GTA Phe Val	GAA Glu	AAA Lys	TAC Tyr	ACIA Arg	AGC Ser	TIG Leu	CTA Leu	GAT Asp	TCT Ser	GAT 1 Asp (IGC T Cys P	TT TAA he —
	430	I.		440		4	50		460		4	70		J.	480		12	450			1460		14	70			1480			1490)		1500
AAC ATA		AAG	IGT (TT GG	C ATT T	AA 1	igt ac	A GOC	AAA	ACG A	og ta	A TTA	TTC	ATG Met	₩ GGC Gly	ATG T	AT A	AGG .	ACC	crc	ATA GTI	TCC	ATA	CAG	AGC	AAT	œc	œ	CAA	ATA	09C A	loc c	TC TGC
	490			500		5	0		520		5	30		1	540		15	510	Bç	j I I	1520		15	30			1540			1550)		1560
TGC GTC Cys Val	: TOG . Ser	TCA Ser	AAA Lys :	# AGC ACC Ser The	CACAG	IG (al I	TT TC .eu Se	r CCA r Pro	CAG Gln	ACA T Thr S	CT TI Ger Ph	T AAT ie Asr	GAA Glu	GOC Ala	TCC Ser	GTG A	ng (ATG	000	OGT TGA	GCC	TOG	GGA	AAC	GCT	TTT	TTC	CAC	GTA	AGC G	TC O	OG CCA
	550	1		560		57	ro		580		5	90		(600		15	570			1580		15	59 0			1600			1610)		1620
OGT AOC Arg Thr	TCI Ser	TTC Phe	AGA (Arg	CA CIO Ala Leu	C COC G 1 Pro G	3C (1y 1	CATO ProSe	G CAA r Gln	AGA Arg	CAA T Gln L	TG GA eu Gl	G GTC u Val	TAT Tyr	GAT Asp	CAA Gln	AGT C	cc o	TT	œ	AAA	CTT GAT	00 0	CAT	TCA	300	OGT	GAG	TTC	AGG	TOG	00G #	NGG G	TG CTG
	610	ŀ		620		6	30		640		6	50			660		16	530			1640		16	50			1660			1670)		1680
TGC TT/ Cys Leu	ATI 11e	GGT Gly	GCA (Ala)	5005 0050 Ala Arg	C 100G 0 g Trop P	CT (ro <i>l</i>	LAC GA LISIP AS	r TOC p Ser	AGT Ser	AAG 1 Lys S	iog AA Jer As	T ACC	CCT Pro	GAA Glu	AAC Asn	GGC C	0 G 1	10G '	TAT	œ	GAG TIG	AAG	œ	acg	GCA	ACG	CAC	TGT	TCA	ATA	TOG 1	IGC C	GC CAA
	670)		680		69	0		700		7	10			720		16	5 9 0			1700		17	10			1720			1730)		1740
AGG GC/ Ang Ala	TAT Tyr	TGT Cys	CAG Gln	AGC ATC Ser Met	G TAC A t Tyr A	AC 1 sn 1	ICA AT Ser II	T CCC e Ang	TCT Ser	GCT G Ala G	GA GA 1y As	TGAA	ATT 1 Ile	TCC Ser	AGA Ang	CGA T	GA /	AGT .	ACT	TTG	tga cog	GCA	AOG	TOG	GTT	GTT	OGA	GIG	AOG	000	ATC A	AAC C	TC AGG
	730)		740		7	50		760		7	70			780		1'	750			1760		17	70			1780			1790)		1800
GGT GGA Gly Gly	A ATC	ACA Thr	TCT Ser	TTT GAG Phe Glu	GAA C JGlu L	TA 1 eu 1	10G 00 1mp G1	G COC y Ang	GCA Ala	ACT G Thr G	AA TG Elu Tr	ng CCG4 np Anne	A CTT g Leu	TCA Ser	AAG Lys	GGC G	GA 1	TTT	œc	GGA	TTT OGA	CTG	œc	CTG	TGG	AAT	TGC	ACG	ACC	œt	ACC (CCC C	aa acc
	790)		800		8	10		820		8	30			840		18	810			1820 #		18	330 #			1840 #			1850 #)		1860 •
TTG CAU Leu Glu	G AGA	GGA	GAG Glu	00G TTA Pro Lei	A TAC T J Tyr S	CT (er /	CA TT Ala Ph	C GOC e Ala	TOC Ser	GAA A Glu A	lOG AC ling Th	G TO Ir Ser	GAT Asp	ACA Thr	GAC Asp	GTT G	AA I	AGT	00C	AGT	606 060	AAG	GCA	GAA	CTT	66C	ACT	TGG	œc	GCT	00T /	ACT G	GA TCT
	850 #)		860 •		8	70 •		880 #		8	890 #			900 •		18	870 #			1880 #		18	390 #			1900 #			1910 #)		1920 •
GCA GTA Ala Vaj	A ACC	OCT Pro	CTG Leu	GTC AA Val Ly:	a CCT T s Pro T	AC /	AAG TO Lys Se	T GTC r Val	CTT Leu	GOC A Ala A	IGA GI Ang Va	IC GT	r gat L Asp	CAC His	GAG Glu	TCA A	CA (GCG	CTT	GCT	000 000	TAT	00G	ACT	CAA	00G	TGA	ACA	GOC	ACT	GAA 1	IGT G	TT TTA
	910 #)		920 •		9	30		940 *		9	950 #			960		1	930 #			1940 #		19	950 #			1960 #			1970 #)		1980 #
GAT GO Asp Al:	C CAO	GAT SASIP	GAA Glu	ATA ATA Ile Me	G CAG G t Gln A	AC . sp	AAT TI Asn Le	G TTI u Phe	GGC Gly	GAT (Asp I	CTG AA Leu As	AT GT. sn Val	r aaa 1 Lys	GTA Val	TAT Tyr	CTG G	GT '	TTG	386	AGC	AAT GGA	ACC	AAA	AAC	CAA	œT	AAG	œ	TAA	TCT	AGC 1	rcc g	GT CAT
	970 #)		980 •		9	90 •		1000		10	010 •	Nr	u I ¹	020		1	990 #			2000		2	010 #		:	2020			2030)		2040 •
OGC CA Arg Gli	A ACA	GCA Ala	TAC Tyr	CTC CA	T GGA A s Gly A	AT (sn	JTT AT Val II	T OCA e Pro	CTT Leu	AAC A Asn 1	ACT TI Thr Ph	nt COR De Arr	c cric g Val	GOG Ala	ACA Thr	AGA 1	003 '	TCG	TCT	oga	TTA OGI	AOG	00C	AGC	AGC	TCA	сст	œc	60C	ACC	TCA 1	roc o	GT ACC

ACC OCA OCT TEG AGT TEG TAT OCT ATE ACA CTC TTT GAA TAC ACC CAG ACC TTC ETC OCA

CTC CAT GAT CTT OGA TOC ACA GAC AAT AAC GCT OCA AGC OGC GAA TGA ACT CAG OGG AGC

FIG. 1. Sequence of the avrB gene and its translated protein sequence. Selected restriction sites noted in the text are shown, and the Shine-Dalgarno box is underlined.

were then stained with Coomassie blue R250 and destained as described by Lane (11).

RESULTS

Sequencing of the avrB gene. Plasmid pPSG0002, containing a 2.2-kilobase-pair (kb) PstI insert of P. syringae pv. glycinea race 0 DNA, was constructed by Staskawicz et al. (21). The DNA sequence of this fragment (Fig. 1) disclosed the presence of a single long open reading frame (ORF) of 963 nucleotides beginning at base 477 and ending at base 1439. No other reading frames of significant length were detected in either strand. The observed ORF was composed of 46% G+C residues, with a position 3 GC content of 40%. A Tn5 insertion near the Nrul site (Fig. 1) was observed to abolish the avrB phenotype (data not shown). A PstI-HindIII fragment lacking 24 base pairs (bp) of the 3' terminus retained avrB activity; however, the corresponding PstI-EcoRI fragment lacking an additional 21 bp from the 3' end did not yield an HR in the appropriate soybean cultivars. These data confirmed that the observed ORF is responsible for the *avrB* phenotype.

The avrB ORF was preceded by an AG-rich Shine-Dalgarno box, and a sequence resembling the E. coli consensus -10 promoter element was observed at base 445, but no sequence resembling the E. coli - 35 promoter element was present (Fig. 1). Identification of the avrB promoter elements, however, will require transcription studies as defined by S1 nuclease protection and primer extension experiments. The ORF initiating at position 477 was further subcloned as the BglI fragment occurring between bases 227 and 1514. This fragment was blunt ended with S1 nuclease, and both orientations were recovered by subcloning into the SmaI site of pUC118 (Table 1). The insert of both constructs was then transferred to the broad-host-range shuttle vectors pDSK519 and pRK415 with the flanking polylinker BamHI and KpnI sites such that the avrB ORF was oriented downstream from the vector *lac* promoters. The resultant plasmids were conjugated into race 4 of *P. syringae* pv. glycinea, and these cells were inoculated into soybean leaves. Bacteria containing the avrB constructs yielded HRs in the expected soybean cultivars, regardless of insert orientation in the vectors. Furthermore, the HRs appeared relatively rapidly (16 to 24 h postinoculation) and involved intense necrosis, similar to results seen in our previous experience with avrB, but unlike HRs occurring in response to the avrC gene (21)

The protein product of the single long ORF identified in Fig. 1 was predicted to contain 321 amino acids and have a

molecular weight of 36,019. Attempts to confirm the production of this protein by sodium dodecyl sulfate-gel electrophoresis of lysates from *E. coli* HB101 or of DH5 α cells carrying pUC118 constructs of *avrB* oriented downstream of the vector *lac* promoter have failed, since discernible protein bands were not observed. However, conditions have recently been devised for improved expression of *avrB* in *E. coli* (T. Huynh, D. Dahlbeck, and B. Staskawicz, manuscript in preparation).

Sequencing of the *avrC* gene. A 2.7-kb *PstI* fragment of *P. syringae* pv. *glycinea* race 0 DNA from pPSG0101, previously shown to confer the *avrC* phenotype (21), was sequenced. This DNA fragment contained two ORFs arranged in tandem (Fig. 2 and 3). No other ORFs of significant length were detected in either strand.

ORF 1 (Fig. 2) comprised 1,056 bp and encoded a protein with 352 amino acids and a calculated molecular weight of 39,145. This ORF had a GC content of 47% overall and 40% in position 3. Thus, there was no tendency for the strong position 3 GC bias frequently observed in *Pseudomonas* genes. The start codon is preceded by a sequence which would be expected to function as a ribosome-binding site (Fig. 2). A sequence similar to the *E. coli* –10 promoter box was present at base 542, but the corresponding –35 box was not seen. The amino-terminal sequence of the protein product showed no relationship to known bacterial signal peptide secretion sequences, and no significant stretches of hydrophobic amino acids were detected.

ORF 2 (Fig. 2) was composed of 720 bases and encoded a protein of 240 amino acids with a calculated weight of 27,483. This coding region had an overall GC content of 53% and a position 3 GC content of 56%. A sequence which weakly resembles a ribosome-binding site occurred 5' to the start codon of ORF 2 (Fig. 2). The protein product lacked a recognizable signal peptide sequence and had no detectable amino acid homology with the protein encoded by ORF 1. ORF 2 lies 27 bp downstream of the termination codon of ORF 1 (Fig. 2), raising the possibility that the two genes may be cotranscribed or indeed cotranslated via readthrough of the ORF 1 stop codon.

To determine whether ORF 1 or 2 conferred the avrC phenotype, various subclones were assessed for the production of a hypersensitive response when conjugated into race 4 of P. syringae pv. glycinea. ORF 1, located between bases 592 and 1647, conferred an HR when all of the 5' DNA or only 91 bp of upstream DNA were retained and the reading frame was cloned in either orientation in shuttle plasmids pRK415 or pDSK519. These HRs were observed only on cultivars previously shown to be incompatible with the avrC gene (21). Furthermore, the HRs conferred by ORF 1 in either orientation developed relatively slowly (40 to 48 h after inoculation) and were less intense than those which occurred in response to avrB, consistent with earlier observations with larger cloned DNA fragments (21). ORF 2, occurring between bases 1678 and 2397, did not yield an HR in soybean leaves when subcloned downstream from a vector lac promoter and introduced into race 4 of P. syringae pv. glycinea (Fig. 3). Thus, ORF 1 in Fig. 3 was sufficient to condition an HR and therefore constitutes the avrC gene.

Homology between *avrB* and *avrC* genes. Computer analyses of the translated *avrB* and *avrC* protein sequences disclosed considerable homology (Fig. 4). An overall amino acid identity of 46% was observed, but homology as high as 80% was noted in the carboxyl ends of the proteins. This region also contains three small hydrophobic domains, but overall it is hydrophilic like the remainder of the proteins.

	10 #	20 #	30 •	40 •	50	60	1	030	1040	1050	1060	1070 1080
GAG COG AT	ra goc gaa cac	: CCC TAT TTA	TAT OGT TOT	gog oga gog oca	GGC ACT OGC	GAG	GAC TTC GCT Asp Phe Ala	ACT GTT O Thr Val Ar	c ATG COC AA g Met Pro Asi	ACC AGA TTC Thir Arg Phe	GTA ACT TCT TT Val Thr Ser Le	G AGG OGA COG TAT au Ang Ang Pro Tyr
	70	80	90	100	110	120	1	090	1100	1110	1120	1130 1140
CTG GTG GG	TT CAC OCA AAC	TAG CTC CTG	GTC TAT OFT	GTC ACC CTC GAG	OGC ATC GAG	GTC	CAC TCA GTA His Ser Val	ATT GAG CO Ile Glu Ar	a GTT AGA AA g Val Arg Asa	CAT TCT GAT His Ser Asp	GCA AAT TOG GA Ala Asn Ser Gl	A ATA TAC GAA GGA u lle Tyr Glu Gly
	130	140	150	160	170	180	1	150	1160	1170	1180	1190 1200
GTG AAC GI	TA ATC CAC GOO	AGG CAG GAA	TAC COC TOG	COC TGA TTG OGG	GTG TAT TIG	000	GAA TAT CTA Glu Tyr Leu	GGC GGA AT Gly Gly II	TGAGACCAAC eGluThrLys	GTC TAT OGT Val Tyr Arg	CAG CAT GGC AO Gln His Gly Th	G ATT TCA AGT ACA r Ile Ser Ser Thr
	190	200	210	220	230	240	1;	210	1220	1230	1240	1250 1260
GTA TTA AG	C OGT TGC TTG	CTA AGC GTC	OGT AGC AOG	ATC CTC TTT OGG	ACA GCT CAG	TOG	ACT ATT COG Thr Ile Pro	ATG ACA AT Met Thr II	A GTA AGT GC/ e Val Ser Ala	GTA GOG GAT	GAC GAT GAT AT Asp Asp Asp 11	* * * A CAT GAA AOG TTA e His Glu Arg Leu
	250	260	270	280	290	300	1:	270	1280	1290	1300	1310 1320
GCA TAG GA	IA TGA CAG GAA	TGG AGT CAC	TGG CCA TTA	TTC TTA AGT OGG	TIC CCT GTT	CCA	AAG AGC CTG Lys Ser Leu	OCA AAG AA Pro Lys As	T GAG COG COG n Glu Arg Arg	CAC CTG AAA His Leu Lys	at TIG AIG GO Asp Leu Met Al	G GOG TCA CAC CCT a Ala Ser His Pro
	310	320	330	340	350	360	13	330	1340	1350	1360	1370 1380
TIG CTA CC	C GGA COC CAG	GGT CAG GTC	TOG GOC TIG	OCT TOG AAC OGT	TCT GCA ACT	OGT	AAC ATG ATC	* ACA CAC AC	T GAT GCA GTA	TAT CIT CCA	* ATG ATC AAG GA'	T CAT TTA GAA TCA
							Asn Met Ile	Thr His Th	r Asp Ala Val	Tyr Leu Prol	Met Ile Lys As	p His Leu Glu Ser
	370 •	380 •	390 •	400	410 #	420	1	9 0 ●	1400	1410 #	1420	1430 1440
GOC ACT AA	G CTT TGA CTA	TTC GTG CAT	GGT AGC ATG	TAT GAA OGT AGA	TAC TIT CTA	GTC	TTA TAT TTG Leu Tyr Leu	CAA GOG AT Gln Ala Il	A GAC OCT TOG e Asp Pro Ser	CTT GAG CAG Leu Glu Gln I	CAC GAG GOC CTO His Glu Ala Leo	C GAG TIG AIC GCT u Glu Leu Ile Ala
	430 #	440 #	450 #	460 •	470 •	480	12	50	1460	1470	1480	1490 1500
ATA OGA TT	A TOG GGC ATG	ACC GCT TGA	TGT GTA CTA	CAT TOG GAA AAA	TCA GGC GAA	GTT	COG ATA CAC Arg Ile His	TOG TOG GC Trip Trip Al	T GCA AGT GCA a Ala Ser Ala	GCA CCA GAT A Ala Pro Asp A	NGG CGT GGC AG7 Arg Arg Gly Sen	r GCT GOC AAA GCA r Ala Ala Lys Ala
	490 #	500 #	510 •	520	530	540	15	510	1520	1530	1540	1550 1560
AGG GCT TA	T TIC CIG TIG	GAA ACG CTT	GCT GTA CAG	FTC TTC CAC GTC	CTG CAA TGC	CAC	GAG TTC GCC Glu Phe Ala	GCA AGA TC Ala Arg Se	A ATC GOG TTC r lle Ala Phe	GCT CAT GGT / Ala His Gly 1	ITT GAA CTA COO Le Glu Leu Pro	CCA TTC GAG CAT Pro Phe Glu His
	550 •	560 #	570	580 •	590 ORF 1	600	15	70	1580	¹⁵⁹⁰ Bgl II	1600	1610 1620
CTA GAA TA	A CAA TAC TTC	ATA TIT TAT	ATC TAT TGA	AAC AGA GOT TAA	AAA ATG GGA Met Gly	AAT Asn	GGT GCA GIT Gly Ala Val	OCT GAT AT Pro Asp Il	F GAA GCA ATG e Glu Ala Met	CTC AGA TCT (Leu Arg Ser (MA GAG CAA TTI Blu Glu Gln Phe	r GTA GAA GAT TAC e Val Glu Asp Tyr
	610 #	620 •	630	640 •	650	660	16	30	1640	1650	1660	¹⁶⁷⁰ ORE 2 ¹⁶⁸⁰
GTT TGT TT Val Cys Ph	C COG OCT AGT e Ang Pro Ser	AGA AGC CAC Arg Ser His	GTT TOG CAA (Val Ser Gln (MA TTT TCT CAA Slu Phe Ser Gln	TCA GAA TTT Ser Glu Phe	TCC Ser	CCT AAC CTT Pro Asn Leu	TTT GAG OG Phe Glu Ary	3 COC OCT CAG 3 Pro Pro Gln	TAA CAA GCA /	ICA GOG GAC ATI	GAG GCA CIG ATG Met
	670 #	680	690	700	710	720	16	90	1700	1710	1720	1730 1740
ACA GOC AG Thr Ala Sea	T CCA GTC AGG r Pro Val Arg	ACA TCT GAA Thr Ser Glu	OGA COC TOG (Ang Pro Ser /	HAT GCA TCA CTA Asp Ala Ser Leu	GAT GCT GOG Asp Ala Gly	CTA Leu	TCA CGA TOC Ser Ang Cys	CGC CTA GO Ang Leu Ala	CGAA TOG TIT a Glu Ser Phe	CTG GOC GAC (Leu Ala Asp H	CT GCT AAG OGT Tro Ala Lys Gly	GAA GTC GTA AAA Glu Val Val Lys
	730	740	750	760	770	780	17	50	1760	1770	1780	1790 1800
GAA AGC TO Glu Ser Ser	G AGT GCT TGT r Ser Ala Cys	CAC AGA AGC His Arg Ser	GGC CTG CGC (Gly Leu Arg (GT CCT GOG AAG Ly Pro Ala Lys	CAT TOC ATG His Ser Met	CTC Leu	TTC GTT OGT Phe Val Arg	CTC GCC GA Leu Ala Glu	A GCC CAC ATT Ala His Ile	ATT OCT OCT A lle Ala Ala 1	ICA AAT TTC GTG I'mr Asın Phie Val	TTC ACG AAT CAC Phe Thr Asn His
	790	800	810	820	830	840	18	10	1820	1830	¹⁸⁴⁰ Not I	1850 1860
AGT TTA GAO Ser Leu Asp	C GAA ATT GGC p Glu Ile Gly	CTA GTC OGT Leu Val Gly	GCT GOG COC 1 Ala Ala Arg 1	TOG OCA GAT GAT Imp Pro Asp Asp	GOG COG GOC Ala Pro Gly	TTA Leu	CAC CTG OCT His Leu Pro	GTT CAC AC Val His Th	GAG TTC CTT Glu Phe Leu	OGT AGG GTG G Arg Arg Val A	CT COG COG COG Lla Arg Arg Pro	CAG COC AAA TCA Gln Arg Lys Ser
	850	860	870	⁸⁸⁰ Hind III	890	900	18	70	1880	1890	1900	1910 1920
AAT ATT TO Asn Ile Ser	C AAC AAA AGC r Asn Lys Ser	AAT ACG CAA Asn Thr Gln	GAA AAT AAG O Glu Asn Lys A	GA TAC TGT GAA Ing Tyr Cys Glu	AGC TTA TAT Ser Leu Tyr	CAA Gln	00G GOG AAA Arg Ala Lys	ATT TTC ACC Lie Phe Thu	ACC AAT TAC Thr Asn Tyr	GAC COC TOC T Asp Arg Cys F	TC GAA GAA GCA he Glu Glu Ala	GGT COC CAA GGA Gly Arg Gln Gly
	910	920	930	940 .	950	960	19	30	1940	1950	1960	1970 1980
GCA GCA OG/ Ala Ala Arg	A ATT GCT GGT g lle Ala Gly	GGC TCC ATA Gly Ser Ile	GOG TCT GOC A Ala Ser Gly A	GA GTT ACT AGT Ing Val Thr Ser	TTC GAT GOG Phe Asp Gly	CTT Leu	CGA TAT GTT Arg Tyr Val	TG GTC GA Val Val Asy	GGT TTT TOC Gly Phe Ser	CAT ACC GOC C His Thr Ala F	CC COG ACC TTC Tro Pro Thr Phe	• GAT GOG GTT CAC • Asp Ala Val His
	970	980	990	1000 1	1010 1	1020	19	90	2000	2010	2020	2030 2040
TOG OGA AAO Trip Ang Asi	C GCA ACA AAA n Ala Thr Lys	TOG OGC TTA Trp Arg Leu	TCT AGA ATT (Ser Arg Ile I	TT TOG GGC GAT eu Ser Gly Asp	GOG TCA AAA Ala Ser Lys	ATC Lle	TTC AGC TAT Phe Ser Tyr	GAG ACC GTO Glu Thr Vai	ACA OGA CTG Thr Ang Leu	GCT GAC ACT G Ala Asp Thr G	AA GCT TTC GAC lu Ala Phe Asp	CTA ATT CCA AAC Leu Ile Pro Asn

		20)50		2	2060			2070)		20	180 #		2	:090 #		21	100 #
TCA	TTC	CAT	crc	TAC	AAG	CTG	CAT	GGA	TCA	GTT	GAC	TGG	CAG	CCGA	CAG	GAA	œ	TCA (CC 3CC
Ser	Phe	His	Leu	Tyr	Lys	Leu	His	Gly	Ser	Val	Asp	Πrp	Gln	Arg	Gln	Glu	Pro	Ser (ly
		_																~	60
		2	110		2	2120			2130)		2	140		4	:150		2	8
GAA	۸TT	ACC	AAG	TAG	ATG	â	ACG	GGT	AAG	αт	GIT	CTT	ATT	TAC	CCA	CGA	AAC	TOC I	AG
Glu	Пе	Thr	Lys	Trp	Met	Pro	Thr	Gly	Lys	Pro	Val	Leu	Ile	Tyr	Pro	Arg	Asn	Ser 1	.ys
			•															_	
		2	170		2	2180			2190)		2	200		2	2210		2	220
TAC	GAA	CTTA	and the second	T	ai a		m	TAC	cric	GAG	ATT:	ATC	inc.	OCA	TTC	CIG.	τcc	GCA 1	rig.
Tvr	Glu	Leu	Ala	Phe	Glu	Gln	Pro	Tvr	Leu	Glu	Met	lle	Ser	Ala	Phe	Gln	Ser	Alal	Leu
		2	230		2	2240			225	5		2	260		2	2270		2	280
~	~	~		ا	~~ T	OTA	CTTC:	cm.	an.	COT	TTT	m	-	***	GAT	AAC	CAC	crc (n.
Ang	GAA	Pm	Asn	Thr	Glv	Val	Leu	Val	Val	Glv	Phe	Glv	Phe	Asn	Asp	Asn	His	Leu	Ala
- B	ura				~_j					,					•				
		2	290		:	2300			231	0		2	320		i	2330		2	340
			*										*						*
GAA	CT	ATT	ATG	TCT	GOC	ATC	CCC A	TCC	AAT	CTA	TUG	TIC	AAG	ATC	GIG	GCA	AIC	AGC	DUC Proc
GIU	Pro	це	Met	Ser	ALA	це	arg	Ser	ASI	Leu	Ser.	rue	Lys	це	Vat	ALA	ne	Ja	
		2	350			2360			237	0		2	380			2390		2	400
		_																	
CCC	CIC	600	CT	TCC	GAA	AGA	GAT	000	CAA	CAA	AAG	GCT	100	CGA	ATG	œ	AAC	CAA	TAA
Gly	Leu	Ala	Pro	Trp	Glu	Arg	Asp	Gly	Gln	GLn	Lys	Ala	Trp	Arg	Met	Arg	Asn	GIN	
		2	¢11∩			21120			243	0		2	440			2450		2	460
		-																	
ATA	CT	TOC	ACA	ACI	000	CAA	TCI	000	AAG	TGC	: 00G	TGA	TGC	: GOG	CAT	TAC	CT	CCT	CAA
						200			Sho	n -		π 2	500			2510	0-	iπ2	520
		4	:470 #			2400	,		243	~ E	sgi	Ще				*	вg	і П.	
TIC	TOC	GT	COGA	AGA	CAT	GAT	TIC	C GCI	. 031	: GOC	IGI	TCI	000	: GGC	C OGA	AAC	AGA	TCT	TGA
									-	-0						2570	,		x580
		ž	:550			2040	,		27	0		4	:500 #			25/0	,		*
			-																_

AGE TCA TET OSC AGE OCT OGE CAG CAT TEG TEC OST ATE ACT GEC CTT ETC ETT TOC C

FIG. 2. Sequence of the avrC gene (ORF 1) and its deduced protein sequence. The translated amino acid sequence of ORF 2 initiating at position 1678 is also shown. Selected restriction endonuclease sites are shown, and Shine-Dalgarno sequences are underlined.

The avrB and avrC gene products can be aligned colinearly and adjusted for extra amino acids at the amino-terminal end of avrC, an 18-bp insertion near the 5' end of avrB and a single amino acid deletion in the middle of the avrC protein.

Expression of avrC gene and ORF 2. E. coli JM-109 cells containing the various constructs shown in Fig. 3 were grown in the presence or absence of IPTG, and whole cells were electrophoresed on sodium dodecyl sulfate-polyacrylamide gels. Cells containing ORF 1 (Fig. 3, avrC) produced a new protein product which had a molecular weight of 39,000 (Fig. 5), in agreement with the molecular weight predicted for the avrC protein from DNA sequence data. The intensity of this band was stronger when cells were supplied with IPTG to activate the vector lac promoter (Fig. 5, lane I) than when they were uninduced (Fig. 5, lane J). One construct, pAVRC2, resulted in the gradual appearance of a slightly smaller protein as E. coli cells were sequentially subcultured (Fig. 5, lane G). However, the comparable construct, pAVRC4 (Fig. 5, lanes I and O; Table 1), did not show similar signs of instability.

A construct in which the *avrC* ORF, from the internal *Hind*III site (Fig. 2) to the *avrC* translational stop, was fused to the 3' end of the *lacZ* gene resulted, as predicted, in a fusion protein which was ca. 27 kDa larger than β -galactosidase (Fig. 5, lane D). The control construct into which the *avrC* DNA was inserted in the opposite orientation resulted in a fusion protein only slightly larger than native β -galactosidase (Fig. 5, lane C).

E. coli cells carrying clone pAVRCp yielded a relatively weak band at 39 kDa but a strong band at 29 kDa, which was presumed to result from ORF 2 (Fig. 5, lanes E and L). Cloning of ORF 2 in the absence of ORF 1 confirmed this suspicion, since pAVRC20, in which the ORF was oriented downstream of the vector *lac* promoter, yielded the same 29-kDa band (Fig. 5, lane N), but the opposite orientation, in pAVRC19, did not (Fig. 5, lane M). Thus, ORF 2 appears to be functional in *E. coli* whether cloned singly or in the presence of the intact ORF 1. The 5-bp spacing between the putative Shine-Dalgarno sequence and the translational start site of ORF 2 therefore appears functional in *E. coli* cells.

Characterization of avrC protein overproduced in E. coli cells. Substantial amounts of the avrC protein and the avrC-lacZ fusion protein were produced in E. coli cells which were supplied IPTG to induce the vector lac promoters (Fig. 5). However, fractionation of E. coli cells showed that the native avrC protein and the lacZ fusion proteins were exclusively present in the cytoplasmic fraction and were pelleted upon low-speed centrifugation of spheroplast or whole-cell lysates (data not shown). It is therefore assumed that the overproduced proteins are deposited in paracrystalline inclusion bodies, as is often the case with overproduced foreign proteins in E. coli (15). Low-speedcentrifugation pellets containing the avrC protein were readily solubilized by stirring at room temperature for 10 min with 0.01 M Tris hydrochloride (pH 7.5) containing 2 M urea and 0.1% octyl glucoside. The reagents could be removed by exhaustive dialysis against 0.01 M Tris hydrochloride (pH 7.5), and the avrC protein would remain soluble, yielding water-clear solutions up to 10 mg/ml. Sodium dodecyl sulfate gels showed that the avrC protein constituted ca. 90% of the total protein present in these preparations (data not shown). Dialysis of the solubilized avrC protein against water, however, resulted in significant precipitation.

Infiltration of avrC protein and lacZ-avrC fusion protein into sovbean leaves. The avrC and avrC-lacZ fusion proteins were solubilized, dialyzed against 5 mM Tris hydrochloride (pH 7.5), and infiltrated into primary leaves of the soybean cultivars Harosoy, Norchief, Acme, Centennial, and Flambeau. Neither, however, elicited a visibly detectable HR in soybean leaves of any cultivar infiltrated with up to 5 mg of total protein per ml. Similarly, infiltration of intact E. coli cells which were overproducing the avrC protein did not lead to a detectable HR in any of the standard soybean differential cultivars. Experiments in which the dialyzed avrC protein was mixed with living race 4 cells of P. syringae pv. glycinea resulted in typical compatible plant reactions with no signs of an HR observed at any time after inoculation. Thus, the avrC protein does not appear to possess elicitor activity in soybean leaves.

DISCUSSION

Two avirulence genes from race 0 of P. syringae pv. glycinea, avrB and avrC, were sequenced and found to encode single protein products of 36 and 39 kDa, respectively, as determined by DNA sequence data and expression in *E. coli*. The two genes can be readily distinguished by the particular cultivars on which they elicit the HR and by the distinctive HRs which they condition; avrB confers a more rapid and necrotic HR than avrC. Despite these differences, the two coding regions share considerable amino acid identity (Fig. 4). Since both genes were cloned from race 0 of *P. syringae* pv. glycinea (21), it is possible that one of them originated by duplication and modification of the other.

FIG. 3. Various subclones of the insert DNA of pPSG0101, carrying *avrC*. Fragments were recloned into pUC119, tested for protein synthesis in *E. coli* by gel electrophoresis, and shuttled to pRK415 or pDSK519. The resulting plasmids were transferred to race 4 of *P. syringae* pv. *glycinea* and tested for their ability to elicit an HR on the differential soybean cultivars. Subclones were prepared by using the noted restriction sites or an exonuclease-S1 sequencing deletion (Δ 91) (Table 1). Abbreviations: Cp, pAVRCp; C1, pAVRC1; C16, pAVRC16; C4, pAVRC4; and C20, pAVRC20.

Significantly, both genes were previously observed to possess repeated DNA sequences in the flanking 3' and 5' regions (21). Furthermore, while avrB is located on the race 0 chromosome, avrC appears to occur on a plasmid (unpublished data). Coupled with the relatively low GC content of the two genes, especially in position 3, these observations raise the possibility that avrB and avrC were relatively recently introduced into *P. syringae* pv. glycinea from another source.

As predicted by the gene-for-gene relationship, the avirulence genes thus far identified fully account for the race phenotypes of the investigated *P. syringae* pv. glycinea races. Thus, avrA determines the race 6 phenotype (17, 20), whereas avrB accounts for the race 1 phenotype (21). However, race 0 contains both avrB and avrC (21), and the function of both of these genes leads to the unique reactions of race 0 on the standard soybean differential set. The avrA gene (17) has no detectable homology to avrB or avrC, but the latter two genes and their protein products share considerable homology with each other (Fig. 4). We are currently constructing recombinants between these genes and examining phenotypes that are apparent after the introduction of the genes into race 4 of *P. syringae* pv. glycinea and inoculation of the differential soybean cultivars.

The *avrC* gene was subcloned on a 2.7-kb *PstI* fragment which contains two ORFs (Fig. 2). Further subcloning (Fig. 3) showed that only ORF 1 is required for the *avrC* phenotype in *P. syringae* pv. *glycinea* when the ORF is introduced into the bacterium on a multicopy plasmid. However, it is possible that ORF 2 contributes to the avirulent phenotype in the wild-type race 0 bacterium. Southern blot analyses have indicated that ORF 2 is present in two other races of *P. syringae* pv. *glycinea* which do not contain *avrC* (21). This may suggest that ORF 2 has a function in the bacterium exclusive of the presence of *avrC*.

Both *avrB* and *avrC* contain codons such as CCT, CAA, and AAT which are not frequently used in highly expressed *E. coli* proteins (6). Whether such codon usage affects expression in *P. syringae* pv. glycinea is not clear. However, *avrC* was satisfactorily overexpressed in *E. coli* by using

avrB MGCVSSKSTTVLSPQTSFNEASRTSFRAL
avrC MGNVCFRPSRSHVSQEFSQSEFSTASPVRTSERPSDASLDAGLESSSACHRSGL
30 PGPSQRQLEVYDQC-LIGAARWPDDSSKSNTPENRAYCQSMYNSIRSAGDE :: : : :::::: : :::::::::::::::::::::
80 ISRGGITSFEELWGRATEWRLSKLQRGEPLYSAFASERTSDTDAVTPLVKPYKSVL : : ::: :: :: :: :: :: :: :: :: :: :: :
136ARVVDHEDAHDEIMQDNLFGDLNVKVYRQTAYLHGNVIPLNTFRVATDTEYLRDRV::::::::::::::168ERVRNHSDANSEIYEGEYLGGIETKVYRQHGTISSTTIPMTIVSAVADDDDIHERL
192 AHLRTELGAKALKQHLQRYNPDRIDHTNASYLPIIKDHLNDLYRQAISSDLSQAEL : :: :: :: ::: ::: ::: :: :: :: :: 224 KSLPKN-ERRHLKDLMAASHPNMITHTDAVYLPMIKDHLESLYLQAIDPSLEQHEA
248ISLIARTHWWAASAMPDQRGSAAKAEFAARAIASAHGIELPPFRNGNVSDIEAMLS248IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
304 GEEEFVEKYRSLLDSDCF 321 ::::::::::::::::::::::::::::::::::::
335 SEEOFVEDYPNLFERPPO 352

FIG. 4. Homology of the protein products of avrB and avrC. Connecting dots denote identical amino acids.

FIG. 5. Sodium dodecyl sulfate-polyacrylamide gel of *E. coli* JM-109 cells containing various plasmid constructs of the *avrC* gene (ORF 1) or ORF 2 (Fig. 2). All cells were grown on LB medium overnight at 28°C in the presence of 1 mM IPTG unless otherwise noted. Lanes: A, molecular weight standards with sizes noted on the left; B, cells with pUC119 only; C, BMH 71-18 cells containing pAVRC11 (arrow denotes β -galactosidase fusion protein only slightly larger than native β -galactosidase at 116 kDa); D, BMH 71-18 cells containing pAVRC12 (arrow denotes *lacZ-avrC* fusion protein at ca. 145 kDa); E, pAVRC2; H, pAVRC13 (I arrow denotes protein at ca. 39 kDa); G, pAVRC2; H, pAVRC3 (I, pAVRC4; J, cells with clone pAVRC4 but not supplied with IPTG; K, pUC119 only; L, pAVRCp; M, pAVRC19; N, pAVRC20 showing protein band at 29 kDa as denoted by the arrow; O, pAVRC4.

transcriptional fusions of the *avrC* gene behind the vector *lac* promoter of pUC119 (Fig. 5). Most of the protein, however, occurred in insoluble aggregates which were pelleted from cell lysates. These were assumed to represent the inclusion bodies frequently formed by overexpressed proteins in *E. coli* (15).

We do not know the functions of the avrB and avrC gene products in P. syringae pv. glycinea cells, and database searching with programs available through the BIONET resource has failed to locate known proteins with significant homology with the avrB or avrC proteins. As previously observed with the avrA protein product (17), the proteins encoded by avrB and avrC do not contain recognizable signal sequences or significant hydrophobic regions. Infiltration of suspensions of the inclusions or soluble preparations of the avrC protein prepared with urea-octyl glucoside did not result in a detectable HR in any of the soybean differential cultivars. The avrC protein product may, therefore, not function as an elicitor of the soybean HR per se. This possibility must be considered with caution, however, since expression of the gene in P. syringae pv. glycinea and E. coli cells may vary in some way, or solubilization of the avrC protein in our experiments may have resulted in structural changes that abolished elicitor activity.

ACKNOWLEDGMENTS

The research was supported by National Science Foundation grants DCB-8502132 and DCB-8709867 to N.T.K. and U.S. Depart-

ment of Agriculture grant 86-CRCR-1-2086 to B.S. Some of the sequence data were analyzed with help from the BIONET facility, whose funding is provided by Public Health Service grant U41 RR-01685-02 from the Biomedical Research Technology Program, Division of Research Resources, National Institutes of Health.

Soybean seeds were generously supplied by R.I. Buzzell.

LITERATURE CITED

- Cross, J. E., B. W. Kennedy, J. W. Lambert, and R. L. Cooper. 1961. Pathogenic races of the bacterial blight pathogen of soybeans, *Pseudomonas glycinea*. Plant Dis. Rep. 50:557– 560.
- 2. Crouse, G. F., A. Frischauf, and H. Lehrach. 1983. An integrated and simplified approach to cloning into plasmids and single-stranded phages. Methods Enzymol. 101:78-89.
- 3. Dean, C., P. van den Elzen, S. Tamaki, P. Dunsmuir, and J. Bedbrook. 1985. Differential expression of the eight genes of the petunia ribulose diphosphate carboxylase small subunit multi-gene family. EMBO J. 4:3055-3061.
- Ditta, G., S. Stanfield, D. Corbin, and D. R. Helinski. 1980. Broad host range cloning system for Gram-negative bacteria: construction of a gene bank of *Rhizobium meliloti*. Proc. Natl. Acad. Sci. USA 27:7347-7351.
- 5. Ellingboe, A. E. 1984. Genetics of host-parasite relations: an essay. Adv. Plant Pathol. 2:131-151.
- Goug, M., and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10:7055– 7074.
- Keen, N. T. 1982. Specific recognition in gene-for-gene hostparasite systems. Adv. Plant Pathol. 1:35–82.
- 8. Keen, N. T., and M. J. Holliday. 1982. Recognition of bacterial pathogens by plants, p. 179–217. In M. S. Mount and G. Lacy (ed.), Phytopathogenic procaryotes, vol. 2. Academic Press, Inc., New York.
- Keen, N. T., and S. Tamaki. 1986. Structure of two pectate lyase genes from *Erwinia chrysanthemi* EC16 and their high-level expression in *Escherichia coli*. J. Bacteriol. 168:595–606.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
- Lane, L. C. 1978. A simple method for stabilizing protein sulfhydryl groups during SDS-gel electrophoresis. Anal. Biochem. 86:655-665.
- Lederberg, E. M. 1986. Plasmid prefix designations registered by the plasmid reference center. Plasmid 15:57-92.
- Long, M., P. Barton-Willis, B. J. Staskawicz, D. Dahlbeck, and N. T. Keen. 1985. Further studies on the relationship between glyceollin accumulation and the resistance of soybean leaves to *Pseudomonas syringae* pv. glycinea. Phytopathology 75:235– 239.
- 14. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 15. Masui, Y., T. Mizuno, and M. Inouye. 1984. Novel high-level expression cloning vehicles: 10⁴-fold amplification of *Esche*richia coli minor protein. Bio/Technology 2:81-85.
- Mukherjee, D., J. W. Lambert, R. L. Cooper, and B. W. Kennedy. 1966. Inheritance of resistance to bacterial blight in soybeans. Crop Sci. 6:324–326.
- Napoli, C., and B. J. Staskawicz. 1987. Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of *Pseudomonas syringae* pv. glycinea. J. Bacteriol. 169:572– 578.
- 18. Pustell, J., and F. C. Kafatos. 1984. A convenient and adaptable package of computer programs for DNA and protein sequence management, analysis and homology determination. Nucleic Acids Res. 12:643-655.
- Rüther, U., and B. Müller-Hill. 1983. Easy identification of cDNA clones. EMBO J. 2:1791–1794.
- 20. Staskawicz, B. J., D. Dahlbeck, and N. T. Keen. 1984. Cloned avirulence gene of *Pseudomonas syringae* pv. glycinea determines race-specific incompatibility on *Glycine max*. Proc. Natl.

Acad. Sci. USA 81:6024-6028.

- Staskawicz, B., D. Dahlbeck, N. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of *Pseudomonas syringae* pv. glycinea. J. Bacteriol. 169:5789–5794.
- Vieira, J., and J. Messing. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153:3–11.
 Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved
- Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.