Effects of Nitrate and Nitrite on Dissimilatory Iron Reduction by Shewanella putrefaciens 200[†]

THOMAS J. DICHRISTINA

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

Received 23 September 1991/Accepted 10 January 1992

The inhibitory effects of nitrate (NO_3^-) and nitrite (NO_2^-) on dissimilatory iron (Fe^{3+}) reduction were examined in a series of electron acceptor competition experiments using *Shewanella putrefaciens* 200 as a model iron-reducing microorganism. *S. putrefaciens* 200 was found to express low-rate nitrate reductase, nitrite reductase, and ferrireductase activity after growth under highly aerobic conditions and greatly elevated rates of each reductase activity after growth under microaerobic conditions. The effects of NO_3^- and NO_2^- on the Fe^{3+} reduction activity of both aerobically and microaerobically grown cells appeared to follow a consistent pattern; in the presence of Fe^{3+} and either NO_3^- or NO_2^- , dissimilatory Fe^{3+} and nitrogen oxide reduction occurred simultaneously. Nitrogen oxide reduction was not affected by the presence of Fe^{3+} , suggesting that *S. putrefaciens* 200 expressed a set of at least three physiologically distinct terminal reductases that served as electron donors to NO_3^- , NO_2^- , and Fe^{3+} . However, Fe^{3+} reduction was partially inhibited by the presence of either NO_3^- or NO_2^- . An in situ ferrozine assay was used to distinguish the biological and chemical components of the observed inhibitory effects. Rate data indicated that neither NO_3^- nor NO_2^- acted as a chemical oxidant of bacterially produced Fe^{2+} . In addition, the decrease in Fe^{3+} reduction activity observed in the presence of both NO_3^- and NO_2^- was identical to the decrease observed in the presence of NO_2^- alone. These results suggest that bacterially produced NO_2^- is responsible for inhibiting electron transport to Fe^{3+} .

The physiological role of nitrate reductase in dissimilatory iron reduction has been a matter of controversy since Ottow (13) first proposed that nitrate reductase could serve as an electron donor for both nitrate (NO₃⁻) and ferric iron (Fe³⁺). Several previous studies (12, 14, 20) demonstrated an apparent inhibitory effect of NO₃⁻ on the Fe³⁺ reduction activity of a variety of microorganisms grown under laboratory conditions. Ottow (13) suggested that nitrate reductase could transfer electrons to either NO₃⁻ or Fe³⁺ but would preferentially utilize NO₃⁻ in the presence of both oxidants. Thus, the lack of Fe³⁺ reduction activity was apparently due to competitive inhibition by NO₃⁻. Subsequently, several investigators hypothesized that NO₃⁻ inhibition of Fe³⁺ reductase activity was primarily the result of secondary (i.e., postreduction) chemical reoxidation of bacterially produced ferrous iron (Fe²⁺) by nitrite (NO₂⁻) (6, 11).

Difficulty in separating the biological and chemical components of the Fe³⁺ reduction process is generally attributed to the high redox activity of iron salts at neutral pH (3, 19). For example, Fe³⁺ is reduced chemically by a variety of organic and inorganic compounds (e.g., ascorbate, phenols, and sulfides), whereas Fe²⁺ is oxidized chemically by a number of inorganic compounds, most notably molecular oxygen (O₂), manganese oxide [MnO₂ (s)], and NO₂⁻ (4, 9, 19).

The present study was undertaken to clarify the physiological relationship between the dissimilatory reduction of NO_3^- , NO_2^- , and Fe^{3+} and to determine whether the inhibitory effect of NO_3^- on Fe^{3+} reduction was due to competitive inhibition by NO_3^- or to chemical reoxidation of bacterially produced Fe^{2+} by NO_2^- . To meet these objectives, a series of electron acceptor competition experiments were conducted in which Fe^{3+} and either NO_3^- or NO_2^- were provided simultaneously to a model microorgan-

ism and the respective electron acceptor reduction activities were determined. An in situ Fe^{2+} production assay was used to minimize the effects of nitrogen oxide-catalyzed Fe^{2+} oxidation and to allow comparison of the biological and chemical components of the Fe^{3+} reduction process. S. putrefaciens 200 was chosen as a model microorganism for this study; it was selected largely because of its ability to reduce a wide range of terminal electron acceptors, including O_2 , Fe³⁺, NO₃⁻, and NO₂⁻ (11, 15, 16). Results from earlier competition experiments with S. putrefaciens 200 demonstrated that the inhibitory effects of O_2 on Fe³⁺ reduction activity were due to preferential channeling of electrons to O_2 (2), whereas the inhibitory effects of NO_3^- on Fe^{3+} reduction activity were due to chemical reoxidation of bacterially produced Fe^{2+} by the product of NO_3^- reduction, NO_2^{-1} (11). Here, such competition experiments are extended to include Fe³⁺ and either NO_3^{-1} or NO_2^{-1} . Results presented here show that, although NO_2^- is responsible for inhibiting Fe^{3+} reduction activity, NO_2^- -catalyzed Fe^{2+} oxidation is not a major factor contributing to the observed inhibition pattern.

MATERIALS AND METHODS

Bacterial strain and growth conditions. S. putrefaciens 200 was obtained from D. W. S. Westlake, University of Alberta, Edmonton, Alberta, Canada. Growth medium consisted of a semidefined lactate medium as described previously (10). The electron acceptor competition experiments described below were conducted with batch cultures of S. putrefaciens 200 grown in a 1-liter double-jacketed glass reactor vessel. The vessel was fitted with a stainless steel headplate containing a variety of ports designed to accommodate electrode insertion, sample withdrawal, and reagent addition. The temperature was held constant at 30°C by pumping water from a constant-temperature bath through the outer jacket. Dissolved oxygen content and pH were

[†] Contribution 7963 of Woods Hole Oceanographic Institution.

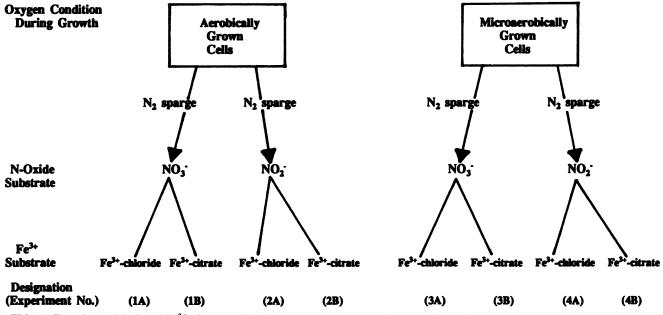


FIG. 1. Experimental design of Fe^{3+} -nitrogen oxide electron acceptor competition experiments (see Materials and Methods for a detailed description).

monitored with an O_2 sensor (Ingold Electrodes, Inc.) and pH probe (Orion Research, Inc.), respectively. Compressed air and high-purity N_2 (g) were introduced through glass spargers inserted through the headplate. The culture pH (7.0 \pm 0.1) was maintained by manual injection of either 10 N NaOH or 10 N H₂SO₄. Agitation was accomplished by means of a magnetic stir bar.

Experimental design. The experimental procedure followed during the electron acceptor competition experiments is given schematically in Fig. 1. Two sets of kinetic experiments, differing solely in the dissolved oxygen concentration maintained during batch growth, were conducted to determine the effects of NO_3^- and NO_2^- on the Fe^{3+} reduction activity of S. putrefaciens 200. In the first set, cells were grown in batch culture under highly aerobic conditions (>90% air-saturated medium throughout the growth period), whereas in the second set cells were grown in batch culture under microaerobic conditions (<1% air-saturated medium during the last 4 h of growth). Four electron acceptor competition experiments were subsequently conducted with the batch cultures grown under either oxygen condition; equimolar concentrations of a nitrogen oxide (either KNO_3 [15 mM, except where noted] or KNO_2 [3 mM]) and an Fe³⁺ substrate (either Fe³⁺-chloride or Fe³⁺-citrate) were sequentially added to each batch, and the concentrations of Fe²⁺ and NO_2^- were monitored for a period of 60 to 80 min after electron acceptor addition. Each electron acceptor was added from a freshly prepared stock solution. Fe³⁺-chloride and Fe³⁺-citrate stocks were neutralized with 10 N NaOH before addition. To determine the relative contribution of NO₂⁻-catalyzed chemical reoxidation of bacterially produced Fe^{2+} to the apparent inhibition of Fe^{3+} reduction activity, each of the four electron acceptor competition experiments was run in duplicate. In the first run, bacterially produced Fe²⁺ was allowed to react chemically with the nitrogen oxides (and their reduced forms, if any); aliquots were withdrawn and immediately tested for the presence of Fe^{2+} and NO_2^- (see Chemical Analyses, below). In the second run, an in situ ferrozine assay (see Chemical Analyses, below) was used to detect bacterially produced Fe^{2+} (i.e., before NO_2^{-} -catalyzed Fe^{2+} oxidation could occur).

Growth was initiated in each batch by adding 2.0 ml of a dense overnight bacterial culture to the growth medium and monitored by periodic measurement of the optical density at 600 nm. When highly aerobic conditions were required during growth, compressed air (filter sterilized) was bubbled in vigorously throughout the growth period; when microaerobic conditions were required during growth, high-purity N_2 (g) and compressed air were trickled in at low rates to maintain dissolved oxygen concentrations at less than 1% air saturation. When a target optical density was reached (optical density at 600 nm of 0.25), chloramphenicol was added to 0.25 mM. Cultures grown under microaerobic conditions were immediately sparged with N₂ to avoid possible inactivation of the ferrireductase, nitrate reductase, or nitrite reductase activity by O_2 (5). A separate experiment was conducted to determine the O_2 utilization rate of cells grown under microaerobic conditions. For cultures grown under highly aerobic conditions, O₂ utilization rates were determined immediately after chloramphenicol addition by monitoring the time-dependent oxygen profile for 5 min. Residual oxygen was subsequently purged from the reactor vessel

with high-purity N_2 (g). The Fe²⁺ and NO₂⁻ production rates detected in the electron acceptor competition experiments were compared to those rates detected in a series of biotic control experiments. The biotic control experiments consisted of measuring the rate at which O₂, NO₃⁻, NO₂⁻, Fe³⁺-citrate, and Fe³⁺-chloride were reduced when each was provided as the sole electron acceptor to batch cultures grown under either oxygen condition. In the cases of O₂, NO₃⁻ (microaerobically grown cells only), and NO₂⁻, the reduction rates were determined by measuring the rate at which each electron acceptor was depleted. In the case of NO₃⁻ reduction by aerobically grown cells, the NO₃⁻ reduction rate was determined by measuring the rate of both NO₃⁻ depletion and NO_2^{-} production. In the cases of Fe³⁺-chloride and Fe³⁺-citrate, the reduction rates were determined by measuring the rate of Fe²⁺ production. Anaerobic conditions were maintained throughout the time course of each experiment. Total cellular protein was determined by the method of Lowry et al. (7).

To determine the rate of abiotic reduction of each electron acceptor, Fe^{3+} -citrate, Fe^{3+} -chloride, NO_3^- , and $NO_2^$ were added to separate 1-liter batches of autoclaved, N_2 sparged growth medium and the concentration of Fe^{2+} or NO_2^- was monitored for a period of 60 to 90 min.

To examine more closely the ability of NO_3^- and NO_2^- to act as chemical oxidants of Fe^{2+} , two series of abiotic oxidation control experiments were conducted. In the first series, 50 μ M Fe²⁺ (as FeCl₂ · 4H₂O) and either KNO₃ (15 mM) or KNO₂ (3 mM) were added to 1-liter batches of autoclaved, N₂-sparged growth medium (30°C) and the concentration of Fe²⁺ was monitored for a period of 60 to 90 min. In the second series of abiotic oxidation control experiments, an Fe³⁺ substrate (either Fe³⁺-chloride [15 mM] or Fe³⁺-citrate [15 mM]) was included in the autoclaved, 1-liter batch of N₂-sparged growth medium along with 50 μ M Fe²⁺ and a nitrogen oxide (either KNO₃ [15 mM] or KNO₂ [3 mM]) and the concentration of Fe²⁺ was monitored for a period of 60 to 90 min.

Chemical analyses. (i) Iron. Each electron acceptor competition experiment was run in duplicate. In the first run, the electron acceptors (and their reduced forms, if any) were allowed to react chemically in the liquid culture. Samples were withdrawn at preselected time intervals, and the Fe²⁺ concentration was monitored by the ferrozine extraction method (17, 18). In the second run, ferrozine (to 8 mM) was added directly to the liquid culture prior to electron acceptor addition. This technique permitted detection of Fe²⁺ production in situ and was used to eliminate the effects of chemical reoxidation of Fe^{2+} by NO_2^{-} . Previous studies demonstrated that the magenta Tris complex between Fe²⁺ and ferrozine forms on a time scale faster than that of Fe^{2+} reoxidation (2, 17). When the in situ ferrozine assay was used, samples were withdrawn at preselected time intervals and immediately placed on ice. Each sample was centrifuged at 12,000 \times g for 2 min at 4°C, and the A_{562} was measured. The absorbance of the ferrozine-Fe²⁺ complex ($\varepsilon_{562} = 2.8 \times$ 10⁴ M⁻¹ cm⁻¹) was measured on a Beckman DU-7 spectrophotometer.

(ii) Nitrate. For determination of NO₃⁻, 1-ml samples were withdrawn at preselected time intervals and microfuged at $12,000 \times g$ for 2 min at 4°C and the supernatant was immediately placed at -20° C. NO₃⁻ concentrations were determined with an Alpkem RFA/2 Autoanalyzer (Alpkem Corp., Clackamas, Ore.).

(iii) Nitrite. For determination of NO₂⁻, samples were withdrawn at preselected time intervals and immediately quenched in a sulfanilic acid–*N*-1-naphthylethylene-diamine dihydrochloride solution (8). Each sample was held at room temperature for 10 min to allow full color development. Absorbance measurements (550 nm) were made on a Beckman DU-7 spectrophotometer ($\varepsilon_{550} = 1.9 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$).

RESULTS

Biotic controls. The rates of bacterially catalyzed electron transport to O_2 , NO_3^- , NO_2^- , Fe^{3+} -citrate, and Fe^{3+} -chloride are listed in Table 1. The rates reported in Table 1 were corrected for abiotic electron acceptor reduction by subtracting previously measured abiotic reduction rates (mi-

TABLE 1. Rates of electron transfer to O_2 , NO_3^- , NO_2^- , Fe^{3+} -citrate, and Fe^{3+} -chloride by whole-cell preparations of *S. putrefaciens* 200

Electron	Electron tran grow	- Derepression factor ^d	
acceptor	High O_2 tensionLow O_2 tension(% of electron transfer rate to O_2) ^{a,b} (% of electron transfer rate to O_2) ^{a,c}		
02	1,290 (100)	2,636 (100)	2
NO ₃ -	101 ^e (8)	215 (8)	2
NO ₂ ⁻	20 (2)	184 (6)	9
Fe ³⁷ -citrate	57 (5)	1,054 (40)	19
Fe ³⁺ -chloride	12 (Ì)	256 ^f (10)	21

^a Rates are expressed as nanomolar electrons per milligram of protein per minute.

^b High O₂ growth is 90 to 100% air-saturated medium during growth.

^c Low O_2 growth is 1% air-saturated medium during the last 4 h of growth. ^d Derepression factor is the ratio of the rate of electron transfer after growth under microaerobic conditions to the rate of electron transfer after growth under highly aerobic conditions.

^e Rate of NO_2^- production or NO_3^- depletion.

^f Initial rate of Fe³⁺-chloride reduction.

cromolar per minute) (NO₃⁻, 0.00; NO₂⁻, 0.03; Fe³⁺-chloride, 0.03; Fe^{3+} -citrate, 0.20) from the biotic reduction rate. The corrected rates were then normalized on a per-mole electron basis by assuming that a 4-mol electron transfer was required to reduce each mole of O₂, a 2-mol electron transfer was required to reduce each mole of NO₃⁻ or NO₂⁻, and a 1-mol electron transfer was required to reduce each mole of Fe^{3+} . After growth under highly aerobic conditions, S. putrefaciens 200 expressed low-rate NO₃⁻ and NO₂⁻ reductase activities and, as previously reported (1), low-rate cytochrome oxidase and Fe³⁺ reductase activities. After growth under microaerobic conditions, each reductase activity was expressed at a greatly elevated rate. The derepression factor determined for electron transfer to either O_2 or NO₃⁻ was approximately 2, whereas the derepression factor determined for electron transfer to either Fe³⁺-chloride or Fe^{3+} -citrate was approximately 20. The derepression factor determined for electron transfer to NO₂⁻ was approximately 9. Irrespective of the dissolved O_2 concentration maintained during batch growth, the rate of electron transfer to Fe^{3+} citrate was approximately four- to fivefold greater than the rate of electron transfer to Fe³⁺-chloride. Aerobically grown cells stoichiometrically converted NO₃⁻ to NO₂⁻ (data not shown). Since NO_2^- was toxic to aerobically grown cells at concentrations greater than 4 mM (data not shown), NO₂⁻ was provided at a final concentration of 3 mM during $Fe^{3+}-NO_2^-$ competition experiments.

Fe³⁺-nitrogen oxide electron acceptor competition experiments using aerobically grown cells. Results of the Fe³⁺nitrogen oxide competition experiments using aerobically grown cells are summarized in Table 2. The bacterially catalyzed rates reported in Table 2 were corrected for abiotic electron acceptor reduction (see text above for values) before being normalized on a per-mole electron basis. Aerobically grown cells reduced NO₃⁻ and Fe³⁺-chloride simultaneously (competition experiment 1A). NO₂⁻ production rates were not affected by the presence of equimolar Fe³⁺chloride. However, Fe²⁺ production rates were inhibited approximately 75% by the presence of equimolar NO₃⁻. The inhibited Fe²⁺ production rate detected by using the in situ ferrozine assay was nearly identical to that rate detected when Fe²⁺ chemical interaction was allowed. This finding

		Electron acceptor competition expt	NO_2^- production rate ^{<i>a</i>,<i>b</i>}		Fe^{2+} production rate ^{<i>a</i>,<i>b</i>}			
Growth conditions			Chemical interaction allowed	% Inhibition ^c	In situ ferrozine assay	% Inhibition ^c	Chemical interaction allowed	% Inhibition ^c
1B 2A	Fe	e^{3+} -chloride-NO ₃ ⁻ e^{3+} -chloride	87 (1.00)	0	3 (1.00) 12 (1.00)	75	3 (0.99)	75
	1B. Fe Fe	O_3^- C_3^+ -citrate-NO $_3^-$ C_3^+ -citrate	81 (1.00) 84 (1.00)	5	48 (0.99) 57 (1.00)	16	41 (1.00)	28
	2A. Fe Fe	O_3^- P_2^{3+} -chloride-N O_2^- P_2^{3+} -chloride O_2^-	81 (1.00)		4 (1.00) 12 (1.00)	67	3 (0.98)	75
	2B. Fe Fe	D_2^{3+} A^{3+} -citrate-NO 2^{-} A^{3+} -citrate D_2^{-}			37 (1.00) 50 (0.99)	26	39 (0.99)	22
31 47	3A. Fe Fe	p^{3+} -chloride-NO ₃ ⁻ p^{3+} -chloride O ₃ ⁻			250 (1.00) 256 (1.00)	2	134 (0.97)	46
	3B. Fe Fe	D_3^{3+} -citrate-NO $_3^{-1}$ D_3^{3+} -citrate D_3^{-1}			987 (1.00) 1,054 (1.00)	6	1,034 (1.00)	2
	4A. Fe Fe	$2^{3^{+}}$ -chloride-NO ₂ ⁻ $2^{3^{+}}$ -chloride	193 (0.90)	0	49 (1.00) 256 (1.00)	81	21 (0.98)	92
	4B. Fe Fe	D_2^{-} A^{3+} -citrate-N O_2^{-} A^{3+} -citrate D_2^{-}	184 (0.97) 178 (0.95) 184 (0.97)	3	ND^d	ND		

TABLE 2. Results of Fe^{3+} -nitrogen oxide electron acceptor competition experiments

^a Rates are expressed as nanomolar electrons per milligram of protein per minute (correlation coefficient in parentheses).

^b The results given for electron acceptor competition experiments 3A and 4A are the initial rates of Fe³⁺-chloride reduction and the results for experiments 4A and 4B are the rates of NO₂⁻ depletion. ^c Percent inhibition = [1 - (reduction rate in presence of competing electron acceptor/reduction rate in absence of competing electron acceptor)] × 100.

^c Percent inhibition = [1 - (reduction rate in presence of competing electron acceptor/reduction rate in absence of competing electron acceptor)] × 100.^d ND, not determined.

agreed with the results of previous abiotic Fe^{2+} -NO₃⁻ oxidation controls (data not shown), which demonstrated that NO₃⁻ oxidized Fe²⁺ at relatively slow rates (0.06 μ M min⁻¹, $r^2 = 0.97$). When Fe³⁺-citrate was substituted for Fe³⁺-chloride in an otherwise identical set of competition experiments with NO₃⁻ (competition experiment 1B), a similar inhibition pattern was observed. Aerobically grown cells reduced Fe³⁺-citrate and NO₃⁻ simultaneously. NO₂⁻ production rates were not affected by the presence of equimolar Fe³⁺-citrate; however, Fe²⁺ production rates were inhibited approximately 16 to 28% by the presence of equimolar NO₃⁻. The inhibited Fe²⁺ production rate detected by using the in situ ferrozine assay was nearly identical to that rate detected when Fe²⁺ chemical interaction was allowed.

In the Fe^{3^+} -NO₃⁻ competition experiments described above, NO₂⁻ was produced and therefore was available to act as an inhibitor of Fe^{3^+} reduction activity. NO₂⁻ was subsequently substituted for NO₃⁻, and an otherwise identical set of competition experiments was conducted. In both competition experiments (Fe³⁺-chloride-NO₂⁻ [experiment 2A] and Fe³⁺-citrate-NO₂⁻ [experiment 2B]), Fe²⁺ production rates detected by using the in situ ferrozine assay were nearly identical to those rates detected when Fe²⁺ chemical interaction was allowed. This finding agreed with the result of previous abiotic Fe²⁺-NO₂⁻ oxidation controls (data not shown), which demonstrated that NO₂⁻ oxidized Fe²⁺ at relatively slow rates (0.05 μ M min⁻¹, r^2 = 0.95). In the case of Fe³⁺-chloride (experiment 2A), Fe²⁺ production rates were inhibited approximately 67 to 75% by the presence of NO_2^{-} alone; results from competition experiment 1A (see above) demonstrated that Fe^{2+} production rates were inhibited to a similar extent by the presence of both NO_2^{-} and NO_3^{-} . An identical inhibition pattern was observed in the case of Fe^{3+} -citrate (experiment 2B): Fe^{2+} production rates were inhibited approximately 22 to 26% by the presence of NO_2^{-} alone, whereas results from competition experiment 1B (see above) demonstrated that Fe^{2+} production was inhibited to a similar extent by the presence of both NO_2^{-} and NO_3^{-} . The inhibitory effects of NO_2^{-} and NO_3^{-} on the Fe^{3+} reduction activity of aerobically grown cells were much less pronounced when Fe^{3+} -citrate was used as a competing electron acceptor.

Fe³⁺-nitrogen oxide electron acceptor competition experiments using microaerobically grown cells. Results of Fe³⁺nitrogen oxide competition experiments using microaerobically grown cells are summarized in Table 2. The rates reported in Table 2 were corrected for abiotic electron acceptor reduction before being normalized on a per-mole electron basis. The inhibitory effects of NO₃⁻ on the reduction of either Fe³⁺-chloride (experiment 3A) or Fe³⁺-citrate (experiment 3B) were relatively small (2% and 6% inhibition, respectively). In the case of Fe³⁺-citrate, Fe²⁺ production rates detected after Fe²⁺-NO₃⁻ chemical interaction was allowed were nearly identical to those rates detected by using the in situ ferrozine assay. These results agreed with the results of previous abiotic Fe²⁺-NO₃⁻ oxidiation controls (see above), which demonstrated that NO₃⁻ oxidized Fe²⁺ chloride and NO₃⁻ (experiment 3A), Fe²⁺ production rates detected after Fe^{2+} -NO₃⁻ chemical interaction was allowed were only one-half as fast as those rates detected by using the in situ ferrozine assay. Reasons for this rate discrepancy remain unclear.

Microaerobically grown cells also reduced Fe^{3+} and NO_2^{-} simultaneously. NO_2^{-} reduction rates were unaffected by the presence of either Fe^{3+} -chloride (experiment 4A) or Fe^{3+} -citrate (experiment 4B). However, Fe^{3+} -chloride reduction (experiment 4A) was severely inhibited by the presence of NO_2^{-} : Fe^{2+} production rates were inhibited approximately 81% when the in situ ferrozine assay was used and were inhibited approximately 92% after Fe^{2+} and NO_2^{-} were allowed to interact chemically. Results of the Fe^{3+} -citrate– NO_2^{-} competition experiment (experiment 4B) were difficult to interpret (data not shown) because Fe^{3+} -citrate was provided at below-saturation levels (3 mM).

DISCUSSION

The inhibitory effects of NO_3^- and NO_2^- on the Fe³⁺ reduction activity of S. putrefaciens 200 were examined in a series of electron acceptor competition experiments. The effects of NO_3^- and NO_2^- on the Fe³⁺ reduction of both aerobically and microaerobically grown cells appeared to follow a consistent pattern. In the presence of Fe³⁺ and either NO_3^- or NO_2^- , dissimilatory Fe^{3+} and nitrogen oxide reduction occurred simultaneously. Nitrogen oxide reduction was not affected by the presence of Fe^{3+} , suggesting that S. putrefaciens 200 expressed a set of at least three physiologically distinct terminal reductases that served as electron donors to NO₃⁻, NO₂⁻, and Fe³⁺. However, Fe³⁺ reduction was partially inhibited by the presence of either NO_3^- or NO_2^- . Two lines of evidence suggested that the apparent NO_3^- inhibition of Fe³⁺ reduction activity was due to a factor other than NO_3^- -catalyzed chemical reoxidation of bacterially produced Fe²⁺: (i) results from abiotic Fe²⁺-NO₃⁻ oxidation controls, which demonstrated that chemical oxidation of Fe^{2+} by NO_3^- occurred at negligible rates; and (ii) the observation that the Fe^{2+} production rates detected when bacterially produced Fe^{2+} was allowed to interact chemically with NO_3^- were nearly identical to those rates detected when an in situ ferrozine assay was used to minimize NO_3^- -catalyzed Fe^{2+} reoxidation. However, the apparent decrease in the Fe^{2+} production rate was significantly less than that expected if NO_3^- were acting as a competitive inhibitor of electron transport to Fe³⁺. In addition, the presence of Fe^{3+} did not appear to affect the rate at which aerobically grown cells reduced NO₃⁻ (produced NO_2^{-}). Although partial NO_3^{-} inhibition of Fe³⁺ reduction activity could not be ruled out, these results suggested that NO₃⁻ acted neither as a chemical oxidant of bacterially produced Fe^{2+} nor as a competitive inhibitor of electron transport to Fe^{3+} .

In the presence of Fe³⁺ and NO₃⁻, aerobically grown cells produced Fe²⁺ and NO₂⁻ simultaneously. Therefore, NO₂⁻ was available in the Fe³⁺-NO₃⁻ competition experiments to act either as a chemical oxidant of bacterially produced Fe²⁺ or as a competitive inhibitor of electron transport to Fe³⁺. The former explanation for the apparent NO₃⁻ inhibition of Fe³⁺ reduction activity seemed unlikely in light of three observations: (i) the relatively slow rate at which NO₂⁻ chemically oxidized Fe²⁺ during abiotic Fe²⁺-NO₂⁻ oxidation controls, (ii) the apparent inability of high levels of bacterially produced Fe²⁺ to affect the rate at which NO₂⁻ was produced during Fe³⁺-NO₃⁻ competition experiments, and (iii) the results of subsequent Fe³⁺-NO₂⁻ competition experiments which demonstrated that the Fe²⁺ production rates detected by using an in situ ferrozine assay were nearly identical to those rates detected when Fe²⁺-NO₂⁻ chemical interaction was allowed. These data suggested that the apparent NO₂⁻ inhibition of Fe³⁺ reduction activity was due to a factor other than NO₂⁻ acting as a chemical oxidant of bacterially produced Fe²⁺. Whether NO₂⁻ acted as a competitive inhibitor of electron transport to Fe³⁺ could not be assessed accurately with these data. However, the apparent decrease in Fe³⁺ reduction activity in the presence of both NO₃⁻ and NO₂⁻ was approximately equal to the apparent decrease in Fe³⁺ reduction activity in the presence of NO₂⁻ alone. These results suggested that bacterially produced NO₂⁻ was responsible for inhibiting electron transport to Fe³⁺.

Obuekwe and coworkers (11) previously used S. putrefaciens 200 as a model iron-reducing microorganism to study the effect of NO_3^- on microbial Fe^{3+} reduction. Batch cultures were grown aerobically and either preinduced (via 90 min of anaerobic incubation in the presence of NO_3^{-}) or not induced for expression of NO_3^- reductase activity. Preinduced cells produced NO₂⁻ immediately, whereas uninduced cells produced NO_2^- only after a 2-h lag period. Presumably the uninduced cells were induced for NO₃ reductase expression during this lag period (protein synthesis was allowed during these experiments). This finding was different from that observed in the present study, in which NO_2^- production was detected without preinduction of NO_3^{-} reductase activity; after growth under highly aerobic conditions, S. putrefaciens 200 expressed both low-rate NO_3^- reductase and low-rate NO_2^- reductase activities, whereas after growth under microaerobic conditions, S. putrefaciens 200 expressed greatly elevated rates of each reductase activity. The reason for the observed difference in the growth condition required for NO₃⁻ reductase expression remains unclear. However, in the present study, lactate was used as the principal carbon and energy source for growth, whereas Obuekwe and coworkers (11) used β -glycerophosphate for growth and subsequently used lactate during the NO_3^- reductase preinduction period and Fe^{3+} -NO₃ competition experiments. The observed lag in NO₂⁻ production may have been the lag time required for expression of enzymes involved in either lactate oxidation or NO₃⁻ reduction.

In their $Fe^{3+}-NO_3^{-}$ competition experiments, Obuekwe and coworkers (11) reported that Fe²⁺ production was inhibited only after an initial 3-h incubation period. During this initial incubation period, Fe^{2+} and NO_2^{-} were produced simultaneously. During the last 4 h, a marked decrease in the production of both Fe^{2+} and NO_2^{-} was observed. In several experiments, Fe^{2+} and NO_2^{-} were depleted during this time period. The investigators hypothesized that bacterially produced NO_2^- was chemically reoxidizing Fe²⁺ at a rate faster than the rate of bacterially catalyzed Fe²⁺ production. $Fe^{3+}-NO_2^{-}$ competition experiments to examine this possibility were not conducted. In addition, because protein synthesis was allowed during these experiments, it was possible that NO₂⁻ reductase activity was expressed during the 3-h anaerobic lag period which immediately preceded the onset of the observed inhibitory effect. Since S. putrefaciens 200 is capable of anaerobic growth by using NO_3^- , NO_2^- , or Fe³⁺ as the sole terminal electron acceptor (unpublished data), the observed inhibitory effects of NO_3^- and NO_2^- on Fe^{3+} reduction may be due to the preferential shuttling of respiratory electrons to NO₂⁻ via a newly synthesized high-rate NO₂⁻ reductase. In the present study, NO₂⁻

reductase activity was enhanced nearly 10-fold via growth under microaerobic conditions. Although the Fe²⁺ reoxidation theory of Obuekwe and coworkers (11) could be supported by their Fe³⁺-NO₃⁻ competition data, the inhibition theory proposed in the present study cannot be ruled out. Results from the present study indicate that NO₃⁻ inhibition of electron transport to Fe³⁺ is caused by a preferential shuttling of respiratory electrons to bacterially produced NO₂⁻; Fe³⁺ may serve as a secondary sink for excess electrons after NO₂⁻ reductase activity is fully saturated. The electron transport pathways to Fe³⁺ and NO₂⁻ may share a common respiratory chain component (i.e., branch point) that is poised to deliver electrons to the more oxidizing electron acceptor. Genetic and biochemical experiments are currently under way to examine this possibility.

The Fe^{3+} reduction system of S. putrefaciens 200 is thought to contain low-rate and high-rate components (1). Results from the present study confirmed those findings and demonstrated that the NO₃⁻ and NO₂⁻ reduction systems of S. putrefaciens 200 also consist of low-rate and high-rate components. The inhibition patterns observed during Fe^{3+} - NO_3^- and Fe^{3+} - NO_2^- electron acceptor competition experiments suggest, but do not prove, that S. putrefaciens 200 expresses a set of at least three physiologically distinct terminal reductases that serve as electron donors for NO_3^{-1} , NO_2^{-} , and Fe³⁺. It is proposed that electron transport to Fe^{3+} and NO_3^- proceeds via two physiologically uncoupled pathways, whereas electron transport to Fe³⁺ and NO₂⁻ proceeds via a shared respiratory chain component (branch point) that is poised to transfer electrons to the more oxidizing (or readily available) electron acceptor. In the presence of Fe^{3+} and NO_2^{-} , Fe^{3+} serves as a secondary sink for excess respiratory electrons when the overall rate of anaerobic electron transport is limited by NO₂⁻ reductase activity.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Mellon Foundation and the Powell Foundation and by grant no. OCE-9023943 from the National Science Foundation.

I thank Jane Peterson for help in manuscript preparation and Zofia Mlodzinska for performing the NO_3^- determinations. I also thank Ed DeLong, Ken Nealson, and Mary Lidstrom for technical advice and critical review of the manuscript.

REFERENCES

- Arnold, R. G., T. J. DiChristina, and M. R. Hoffmann. 1986. Inhibitor studies of dissimilative Fe³⁺ reduction by *Pseudomonas* sp. strain 200 ("*Pseudomonas ferrireductans*"). Appl. Environ. Microbiol. 52:281–289.
- 2. Arnold, R. G., M. R. Hoffmann, T. J. DiChristina, and F. W.

Picardal. 1990. Regulation of dissimilative Fe³⁺ reduction in *Shewanella putrefaciens*. Appl. Environ. Microbiol. **56**:2811–2817.

- Berner, R. A. 1964. Iron sulfides formed from aqueous solution at low temperature and atmospheric pressure. J. Geol. 72:293– 306.
- Brons, H. J., R. H. Wilfred, and A. J. B. Zehnder. 1991. Ferrous iron dependent nitric oxide production in NO₃⁻ reducing cultures of *Escherichia coli*. Arch. Microbiol. 155:341–347.
- Gorby, Y. A., and D. R. Lovley. 1991. Electron transport in the dissimilatory iron reducer, GS-15. Appl. Environ. Microbiol. 57:867–870.
- 6. Lascelles, J., and K. A. Burke. 1978. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from *Staphylococcus aureus* and interactions with the nitrate reductase system. J. Bacteriol. 134:585-589.
- 7. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
- Montgomery, H. A. C., and J. F. Dymock. 1961. The determination of nitrite in water. Analyst (London) 86:414-416.
- 9. Myers, C. R., and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321.
- Obuekwe, C. O., and D. W. S. Westlake. 1982. Effect of medium composition on cell pigmentation, cytochrome content and ferric iron reduction in a *Pseudomonas* sp. isolated from crude oil. Can. J. Microbiol. 28:989–992.
- Obuekwe, C. O., D. W. S. Westlake, and F. D. Cook. 1981. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can. J. Microbiol. 27:692-697.
- 12. Ottow, J. C. G. 1968. Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron reduction in *Aerobacter aerogenes*. Z. Allg. Mikrobiol. 8:441–443.
- Ottow, J. C. G. 1970. Selection, characterization and ironreducing capacity of nitrate reductaseless (*nit⁻*) mutants from iron-reducing bacteria. Z. Allg. Mikrobiol. 10:55-62.
- 14. Ponnamperuma, F. N., E. Tianco, and T. Loy. 1967. Redox equilibria in flooded soils. 1. The iron hydroxide systems. Soil Sci. 103:374–382.
- Semple, K. M., J. L. Doran, and D. W. S. Westlake. 1989. DNA relatedness of oil field isolates of *Shewanella putrefaciens*. Can. J. Microbiol. 35:925-931.
- Semple, K. M., and D. W. S. Westlake. 1987. Characterization of iron-reducing *Alteromonas putrefaciens* strains from oil field fluids. Can. J. Microbiol. 33:366–371.
- 17. Sørenson, J. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43:319–324.
- 18. Stookey, L. L. 1970. Ferrozine: a new spectrophotometric reagent for iron. Anal. Chem. 42:779–782.
- 19. Stumm, W., and J. J. Morgan. 1981. Aquatic chemistry. Wiley Interscience, New York.
- Troshanov, E. P. 1968. Iron- and manganese-reducing microorganisms of ore-containing lakes of the Karelian isthmus. Mikrobiologiya 37:786-791.