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The nickel transport system of Clostridium thermoaceticum was investigated with “>NiCl, and an anaerobic
microfiltration transport assay. Transport was optimal at pH 7 to pH 7.5 and 65°C and decreased in the
presence of metabolic uncouplers and inhibitors. Exogenous nickel was concentrated 3,000-fold over the
apparent nickel concentration gradient during typical transport assays. Stored cellular energy appeared to
provide a short-term energy source to power nickel transport, and starvation experiments demonstrated
external energy source stimulation of nickel translacation. The apparent K,,, and V., for nickel transport by
carbon monoxide-dependent chemolithotrophic cells approximated 3.2 uM Ni and 400 pmol of Ni transported
per min per mg of cells (dry weight), respectively. Magnesium, calcium, cobalt, iron, manganese, and zinc did

not inhibit the transport of nickel.

Nickel is a biologically active trace metal, its biological
roles ranging from the induction of carcinomas to the catal-
ysis of essential metabolic processes. In general, the biolog-
ical activities of nickel are dependent upon cellular internal-
ization of the metal (8). Two principal types of
energy-dependent nickel transport system have been de-
scribed (8, 10, 16). One is characterized by a high-affinity
magnesium transporter which translocates other divalent
cations (e.g., nickel) with decreased affinity. The second
type is a high-affinity nickel transport system which is less
affected by other divalent cations, in particular, magnesium.

As an essential element of carbon monoxide (CO) dehy-
drogenase (acetyl coenzyme A synthetase), nickel plays a
vital role in the Wood pathway of acetogenesis (6, 9, 20, 33).
In this study, we report that nickel translocation by Clos-
tridium thermoaceticum (i) is energy dependent, (ii) is not
inhibited by other divalent cations, and (iii) may be powered
by cellular energy reserves.

MATERIALS AND METHODS

Cultivation. C. thermoaceticum ATCC 39073 was culti-
vated at 55°C in a defined medium containing low phosphates
(3.7 mM) and 1 pM NiCl, (as described previously, with the
exclusion of yeast extract [5]). The following energy sources
were used: glucose, 10 mM; methanol, 60 mM; syringic acid,
10 mM; and CO, 144 kPa (14 Ib/in?) over the atmospheric
pressure at room temperature.

Clostridium thermoautotrophicum JW701/3 was cultivated
at 58°C in a defined medium (25, 26), Peptostreptococcus
productus U-1 was cultivated at 37°C in an undefined me-
dium (22), and Acetogenium kivui was cultivated at 55°C in
an undefined medium (19).

Nickel transport assay. Nickel transport was determined
by a modification of the assay previously described for the
characterization of nickel transport by Clostridium pasteu-
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rianum (3). All cell manipulations were performed anaerobi-
cally. Cells were harvested, washed once, suspended in
transport buffer (100 mM N-2-hydroxyethylpiperazine-N’-2-
ethanesulfonic acid [HEPES], pH 7.0, containing 0.5 mM
sodium dithionite and 0.01% resazurin), and preincubated at
55°C for 15 min in crimp-sealed vials in a shaking water bath
(100 oscillations per min). Unless otherwise indicated, glu-
cose (final concentration, 11 mM) was added as an energy
source during this preincubation period. Final cell density
was adjusted to an optical density of 1.0 at 660 nm (equiva-
lent to 0.45 mg of cell dry weight per ml). After the
preincubation period, *NiCl, was injected to various final
concentrations (approximately 30,000 dpm/nmol). At appro-
priate intervals (the standard assay time was 4 min), aliquots
of the cell suspension were removed with a syringe and
subjected to microfiltration analysis with GN-6 Metricel
membrane filters (pore size, 0.45 pm; Gelman Sciences,
Inc., Ann Arbor, Mich.) for the measurement of %*Ni uptake
(3). Assays were performed in triplicate, and the values
reported are the means; the standard error of the means
approximated 4% of the control.

Analytical methods. Growth was monitored at 660 nm with
a Spectronic 88 or Spectronic 501 (Bausch & Lomb, Inc.,
Rochester, N.Y.). Cell dry weights were determined as
previously described (25). Protein was estimated by the
Bradford method (2). Acetate was quantitated by high-
performance liquid chromatography as previously described
(3). Cellular extracts for polyacrylamide gel electrophoretic
analysis were prepared by lysozyme digestion (23), and
electrophoresis and in situ gel staining for CO dehydroge-
nase were done as previously described (7). *NiCl, was
purchased from New England Nuclear Corp., Boston, Mass.

RESULTS AND DISCUSSION

Qptimal conditions for and Kkinetics of nickel transport.
Cells from the mid-log phase of growth displayed the highest
rates of nickel transport (data not shown), and subsequent
studies were performed with cells obtained from this period
of growth. Nickel transport was optimal at pH 7 to pH 7.5
and 65°C (data not shown). However, to more closely
approximate the standard growth conditions of the organ-
ism, we conducted the standard nickel transport assay at pH
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FIG. 1. Linearity (A) and Lineweaver-Burk plot (B) of nickel
transport by C. thermoaceticum. (A) Glucose-cultivated cells with
25 pM *NiCl,. (B) Glucose-cultivated cells with 11 mM glucose (O)
and CO-cultivated cells with an assay gas phase of CO-CO,-N, (7:5:
14) at 144 kPa (14 Ib/in?) over the atmospheric pressure (@).

7.0 and 55°C. Transport was not inhibited by nickel concen-
trations up to 100 pM, was linear, and followed Michaelis-
Menten kinetics (Fig. 1). The apparent K, values for CO-
and glucose-cultivated strain ATCC 39073 were estimated to
be 3.2 and 3.8 pM Ni, respectively, while the corresponding
Vmax Values approximated 400 and 670 pmol of Ni trans-
ported per min per mg of cells (dry weight), respectively.
The apparent X,,, and V., values for both methanol- and
syringate-cultivated cells approximated 10 pM Ni and 1,200
pmol of Ni transported per min per mg of cells (dry weight),
respectively (data not shown). In comparison, nickel trans-
port by the methanogen Methanobacterium bryantii yields a
K,, of 3.1 uM Niand a V,_,, of 24 pmol of Ni transported per
min per mg of cells (dry weight) (14). The cyanobacterium
Anabaena cylindrica exhibits extremely low K, and V.,
values for nickel (17 nM Ni and 0.37 pmol of Ni transported
per min per mg of cells [dry weight], respectively) (4).
Recovery of transported nickel in cell extracts. On the basis
of an intracellular volume of 1.27 pl per mg of cells (dry
weight) (1), exogenous nickel was concentrated by the cells
approximately 3,000-fold over the apparent nickel concen-
tration gradient during the transport assay. Polyacrylamide
gel electrophoretic analysis of cellular extracts prepared
from such cells revealed that less than 1% of the total
transported nickel was present in CO dehydrogenase; most
of the nickel was accounted for as low-molecular-weight
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TABLE 1. Effect of metabolic inhibitors on growth and nickel

transport
e o Growth Nickel transport
Inhibitor (uM) (maximum Aggp) (% of control)
Control (none added) 0.50 100
DCCD (700) 0.15 25
CCCP (1,000) 0.02 68
Nigericin (14) 0.02 47
Harmaline (100) 0.34 43
KCN (200) 0.2 0

“ Abbreviations: DCCD, N,N’-dicyclohexylcarbodiimide; CCCP, carbonyl
cyanide m-chlorophenylhydrazone.

species which electrophoresed coincidently with the dye
front (data not shown).

Effects of metabolic inhibitors and starvation on nickel
transport. Various metabolic inhibitors decreased nickel
transport (Table 1). However, nickel transport was not
consistently affected when glucose was deleted from trans-
port assays of glucose-cultivated cells. On the assumption
that stored cellular energy was involved in powering nickel
transport in the absence of an exogenous energy source,
cells were subjected to glucose starvation prior to injection
of *NiCl, in the transport assay. After 90 min of starvation,
external energy sources were found to significantly stimulate
nickel transport by both glucose- and methanol-cultivated
cells (Table 2). In addition, concentrations of CO as high as
30% stimulated nickel transport approximately threefold by
CO-cultivated cells; higher concentrations of CO were inhib-
itory (data not shown).

Alcaligenes eutrophus (21), Bradyrhizobium japonicum
(28), and Rhodopseudomonas capsulata (29) have been
shown to transport nickel in the initial absence of exogenous
energy sources. In the case of R. capsulata, glycogen was
postulated as the internal energy reserve utilized (29). In the
present study, acetate was not formed by C. thermoaceti-
cum in the absence of glucose (data not shown), suggesting
that cells were not using carbohydrate reserves for nickel
transport in the absence of an exogenous energy source.
High-energy phosphates, such as inorganic PP, (11), may, in
part, account for the ability of C. thermoaceticum to trans-
port nickel in the absence of an exogenous energy source.
Methanobacterium thermoautotrophicum produces both PP;
(18) and 2,3-cyclopyrophospho-glycerate as high-energy
phosphates (17, 27). Further work will be required to resolve
the potential energy reserves of acetogens.

TABLE 2. Effects of starvation and external energy sources on
nickel transport?

Transport assay Nickel transport

Cultivgtion energy source Starvatipn

medium (mM) time (min) o oo 016 RateC
Glucose None o4 5.5 376
Glucose None 90 4.7 319
Glucose Glucose (10) 90 12.5 855
Methanol None o’ 6.3 432
Methanol None 90 0.4 24
Methanol Methanol (60) 90 17.5 1,008

“ Cells were incubated with or without the indicated energy source prior to
the injection of **NiCl, (final concentration, 15 pwM).

® Percent of the total exogenous ®*Ni available in the assay.

< Picomoles of nickel transported per minute per milligram of cells (dry
weight).

¢ At zero time, exogenous energy sources did not appreciably affect nickel
transport.
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Effects of metals on nickel transport. To assess the speci-
ficity of the nickel transport system, we evaluated various
divalent cations for the ability to inhibit nickel transport.
Calcium, cobalt, iron, magnesium, manganese, and zinc
(added as dichloride salts) had no appreciable effects at
concentrations 15-fold greater than that of nickel (data not
shown). In contrast, nickel transport by C. pasteurianum is
strongly inhibited by magnesium, cobalt, and zinc, an inhi-
bition pattern indicative of a magnesium transporter which
transports nickel with a low affinity (3). This observation, in
addition to the relatively low K, for nickel, indicates that
nickel translocation by C. thermoaceticum is catalyzed by a
transporter with a high affinity for nickel.

Nickel transport by other acetogens. As with C. thermoa-
ceticum, the initial capacities of C. thermoautotrophicum
and P. productus to transport nickel were not affected by
exogenous energy sources but were strongly inhibited by
metabolic uncouplers and inhibitors (data not shown). Un-
like nickel transport by the other acetogens tested, nickel
transport by A. kivui was stimulated by exogenous energy
sources without starvation prior to the transport assay (data
not shown).

In general, bacterial nickel transport is energy dependent;
chemolithotrophic bacteria possess high-affinity nickel trans-
port systems (13, 14, 21, 28; this study), while chemoorga-
notrophic bacteria appear to transport nickel with a lower
affinity by a magnesium transport system (3, 15, 24, 31, 32).
Proton motive force is likely to be involved in nickel
transport, although which component of the proton motive
force serves as the main driving force in C. thermoaceticum
is unresolved. Under the assay conditions used in the
present study, ATPase (12) appeared to be involved, since
transport (by glucose-cultivated cells) decreased in response
to the putative ATPase inhibitor N,N'-dicyclohexylcarbodii-
mide. It has been postulated that an Na*/H™* antiporter plays
a role in energy conservation by C. thermoaceticum (30); it
may be of related importance that the putative Na*/H*
antiporter inhibitor harmaline inhibited nickel transport.
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