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Lipid rafts are highly ordered, cholesterol-rich, and detergent-resistant microdomains found in the plasma
membrane of many eukaryotic cells. These domains play important roles in endocytosis, secretion, and
adhesion in a variety of cell types. The parasitic protozoan Entamoeba histolytica, the causative agent of amoebic
dysentery, was determined to have raft-like plasma membrane domains by use of fluorescent lipid analogs that
specifically partition into raft and nonraft regions of the membrane. Disruption of raft-like membrane domains
in Entamoeba with the cholesterol-binding agents filipin and methyl-�-cyclodextrin resulted in the inhibition
of several important virulence functions, fluid-phase pinocytosis, and adhesion to host cell monolayers.
However, disruption of raft-like domains did not inhibit constitutive secretion of cysteine proteases, another
important virulence function of Entamoeba. Flotation of the cold Triton X-100-insoluble portion of membranes
on sucrose gradients revealed that the heavy, intermediate, and light subunits of the galactose–N-acetylgalac-
tosamine-inhibitible lectin, an important cell surface adhesion molecule of Entamoeba, were enriched in
cholesterol-rich (raft-like) fractions, whereas EhCP5, another cell surface molecule, was not enriched in these
fractions. The subunits of the lectin were also observed in high-density, actin-rich fractions of the sucrose
gradient. Together, these data suggest that pinocytosis and adhesion are raft-dependent functions in this
pathogen. This is the first report describing the existence and physiological relevance of raft-like membrane
domains in E. histolytica.

Recent evidence suggests that plasma membrane lipids are
nonhomogeneously distributed and that microdomains with
specialized functions exist in the membrane. One such domain,
a lipid raft, is a highly ordered, less-fluid, and tightly packaged
membrane domain enriched in cholesterol (or other sterols),
glycosphingolipids, and phospholipids with a higher degree of
saturated fatty acyl chains than those of the rest of the mem-
brane (reviewed in references 37 and 54). These domains are
also detergent insoluble and are thus often referred to as
detergent-resistant membranes (DRMs). The presence of mi-
crodomains in membranes allows for the inclusion or exclusion
of membrane proteins based on their attachment to the mem-
brane via lipid anchors or specific protein-lipid interactions.
For example, proteins that are modified with a hydrophobic
attachment, such as a glycosylphosphatidylinositol (GPI) an-
chor, or double acylation or transmembrane proteins with the
capacity to interact with cholesterol are often found in lipid
microdomains.

The physiological role of lipid rafts has been the subject of
numerous recent studies, and it has recently become clear that
these membrane regions play an important role in a variety of
cellular functions, including polarization, signal transduction,
endocytosis, secretion, and cell-cell and cell-pathogen adhe-
sion (17, 18, 21, 34, 36, 44). A range of cell surface receptors
mediating signal transduction pathways through lipid rafts

have been described, including the FcεRI, T-cell, B-cell, epi-
dermal growth factor, and Hedgehog receptors, as well as
integrins (reviewed in reference 54). Typically, these receptors
stably associate with the raft only after ligand binding. Once in
the microdomain, the receptor cluster either recruits or en-
counters other signaling proteins triggering the signaling cas-
cade (54).

Endocytic mechanisms may also rely on lipid rafts. For ex-
ample, depletion of cholesterol from the membrane results in
the inhibition of pinocytosis (23, 24), particularly caveolin- and
clathrin-coated pit internalization (59, 67). More recently, a
requirement for cholesterol has been identified for macropi-
nocytosis in A431 epidermoid carcinoma cells (17). Interest-
ingly, phagocytosis does not appear to be dependent on intact
rafts (46).

Several studies also suggest a role for lipid rafts in secretion.
Wang et al. (70) determined that cholesterol depletion in AtT-20
tumor cells blocks constitutive and regulated secretory vesicle
formation while Martin-Belmonte et al. (36) demonstrated that
the depletion of cholesterol results in the failure of Madin-Darby
canine kidney (MDCK) cells to traffic exogenously expressed thy-
roglobulin, a principal secretory protein of thyroid epithelial cells.
Accumulation of secretory proteins in the trans-Golgi network
after cholesterol depletion suggests a loss in the ability to properly
form secretory vesicles in depleted cells. By deduction, delivery of
plasma membrane-resident proteins may also be inhibited by cho-
lesterol depletion. In support of this, yeast mutants that were
incapable of synthesizing sphingolipids and ergosterol were defi-
cient in trafficking the plasma membrane-associated proteins
Gas1p and Pma1p (3).
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Lipid rafts are also important in regulating and maintaining
cell-cell and cell-matrix adhesions. For example, the slime
mold Dictyostelium discoideum adhesion molecule gp80 asso-
ciates with raft-like microdomains (21, 22). In addition, in
activated T cells, lipid rafts have been shown to segregate
proteins, such as cell adhesion molecules, including the �2
integrin LFA-1 (33). These data suggest that microdomains
may also regulate integrin activity.

Entamoeba histolytica is a protozoan parasite that is the
causative agent of 50 million cases of invasive amebiasis (re-
viewed in reference 57). The parasite, initially ingested as an
environmentally stable cyst via contaminated food or water,
passes through the stomach and excysts in the small intestine,
releasing multiple amoeboid trophozoites. The amoebae move
to the large intestine, where they rely on the endocytic pathway
to obtain nutrients. Fluid-phase pinocytosis (1), phagocytosis
(42), and receptor-mediated endocytosis (4, 47) have been
described for this organism. Although little is known about the
lipids or proteins that participate in endocytosis in Entamoeba,
it has been demonstrated that a Rab7-like GTPase, EhRab7,
associates with early pinosomes (71). Constitutive secretion of
cysteine proteases from the pathogen, which also occurs during
infection, participates in host cell destruction. Twenty cysteine
protease genes have been isolated from Entamoeba (6), and it
has been demonstrated that EhRab7 colocalized in compart-
ments that harbor a well-characterized 27-kDa cysteine pro-
tease (71). Like for endocytosis, the lipids or proteins that
participate in secretion of hydrolases from Entamoeba are not
well characterized.

Virulence also relies on host cell contact, which triggers the
regulated secretion of pore-forming peptides known as amoe-
bapores (32). Adhesion to intestinal cells is mediated by a
multisubunit lectin with specific affinity for galactose (Gal) or
N-acetyl-D-galactosamine (GalNAc) (35). The adhesion lectin
is comprised of a transmembrane heavy subunit (Hgl; 170
kDa) disulfide linked to a GPI-anchored light subunit (Lgl; 31
to 35 kDa) (14, 35). This heterodimer associates noncovalently
with a GPI-anchored intermediate subunit (Igl; 150 kDa) (9,
43). Hgl has been shown to contain a carbohydrate recognition
domain specific for Gal/GalNAc and, more recently, a cyto-
plasmic tail with sequence homology to those of �2 and �7
integrins (14, 68). A study involving a mutagenized heavy sub-
unit of the Gal/GalNAc lectin has demonstrated the impor-
tance of the cytoplasmic tail of this subunit for inside out
signaling (68). Integrins are known to bind to actin through
several actin-binding proteins, and actin may also play a role in
the adhesion of Entamoeba to host cells (7). For example, actin
is localized to pathogen-host contact sites (66). Moreover, it is
postulated that the Gal/GalNAc adherence lectin interacts
with actin and stimulates pathways that induce actin polymer-
ization (15).

Since Entamoeba membranes contain cholesterol (64), it is
conceivable that raft-like domains exist in the plasma mem-
brane of this organism. Therefore, we have conducted a study
to identify and characterize raft-like domains in this pathogen.
Treatment of Entamoeba cells with raft-disrupting agents dem-
onstrated the importance of cholesterol in pinocytosis and
adhesion of the parasite to a host-cell monolayer. Moreover,
the isolation of DRMs revealed that the lectin heavy, interme-
diate, and light subunits were partially enriched in these mi-

crodomains. These results are the first to demonstrate the
existence of raft-like microdomains in Entamoeba and illus-
trate the role of these microdomains in the virulence functions
of this pathogen.

MATERIALS AND METHODS

Strains and culture conditions. E. histolytica trophozoites, strain HM-1:IMSS,
were cultured axenically in TYI-S-33 in screw-cap glass tubes at 37°C (13).
Chinese hamster ovary (CHO) cells were cultured at 37°C in 25-cm2 angle-
necked cell culture flasks in F-12K nutrient medium (Gibco, Carlsbad, Calif.)
supplemented with fetal bovine serum (10% vol/vol), 7.5% sodium bicarbonate
(2% vol/vol), and penicillin-streptomycin (1% vol/vol).

Lipid microdomain disruption. Raft-like microdomains were chemically dis-
rupted by depleting cholesterol with methyl-�-cyclodextrin (MBCD) (Sigma, St.
Louis, Mo.) or by sequestering cholesterol with filipin (Fluka, Seelze, Germany).
In all cases, MBCD was dissolved in TYI-33 medium (TYI-S-33 medium without
serum) at the appropriate concentration; filipin was stored as a stock solution in
ethanol (5 mg/ml) and diluted appropriately in medium as required (see below).
Cells were treated for 30 min at 37°C with either MBCD (7.5 or 15 mM) or filipin
(3.8 �M). For all experiments, mock-disrupted controls were utilized.

Fluorescent lipid analog staining. To stain raft and nonraft regions of the
membrane, Entamoeba cells were allowed to adhere to a two-well coverslip slide
(Lab-Tek, Christchurch, New Zealand) for 2 h in serum-free medium at 37°C. In
some trials, rafts were disrupted by also treating cells with MBCD (7.5 mM) or
filipin (3.8 �M) during the last 30 min of incubation. The medium was removed,
and the cells were incubated with dialkyindocarbocyanine (DiIC16), 1.1 �M;
(Molecular Probes, Eugene, Oreg.) or 1,1�-dilinoleyl-3,3,3�,3�-tetramethylindo-
carboxyanine (FAST-DiI, 0.9 �M; Molecular Probes) for 2 min at room tem-
perature. The cells were then fixed with 4% (vol/vol) paraformaldehyde (10 min
at room temperature). The slides were then rinsed twice with phosphate-buffered
saline (PBS), mounted in SlowFade antifade reagent in PBS (Molecular Probes),
and viewed on a Zeiss LSM 510 confocal microscope.

Measurement of fluid-phase pinocytosis. Log-phase Entamoeba cells were
iced for 10 min to remove them from the glass, pelleted by centrifugation (500 �
g for 5 min), and resuspended in TYI-33 medium prewarmed to 37°C. Cells were
then dispensed into 4-ml glass vials and allowed to recover at 37°C for 3 h. To
carry out cholesterol depletion, additional prewarmed TYI-33 medium supple-
mented with MBCD (7.5 mM) or prewarmed TYI-33 medium alone (control)
was added to the cells during the last 30 min of recovery. After the 30-min
treatment, concentrated fluorescein isothiocyanate dextran (Sigma), diluted in
prewarmed TYI-33 medium, was added to the cells at a final concentration of 2
mg/ml. At each time point (0 or 60 min), the cells were iced as described above,
collected by centrifugation (500 � g, 1 min), and washed twice in ice-cold PBS.
The cells were stored on ice as pellets. Ice-cold PBS was then added to each
pellet, 10% of each sample was removed, and total protein was measured by
using the bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, Ill.)
according to the manufacturer’s instructions. The remaining cells were lysed in
10% (vol/vol) Triton X-100 (Sigma) in PBS. Intracellular fluorescence was mea-
sured by using an FLx800 microplate fluorescence reader (Bio-Tek, Winooski,
Vt.) with excitation and emission wavelengths of 485 and 528 nm. Fluorescence
was corrected for autofluorescence by using the 0-min sample. Pinocytosis is
reported as the fluorescence per milligram of protein.

Measurement of cysteine protease secretion. Secretion of cysteine protease
was measured according to the method of Leippe et al. (32). Briefly, confluent
Entamoeba cultures were iced to remove the cells from the glass, centrifuged
(500 � g, 5 min), and resuspended in 1 ml of TYI-33 in which the phosphates had
been replaced with 10 mM HEPES and supplemented with 0.15 mM CaCl2 and
0.5 mM MgCl2. To establish values for maximum release of protease, 0.4 ml of
the suspension was withdrawn and subjected to three freeze-thaw cycles. The
lysates were cleared by centrifugation (12,000 � g, 5 min) and stored at �80°C
until the enzyme activity was measured. The remaining cell suspensions were
placed in a 37°C water bath. For raft disruption prior to measurement of secre-
tion, cells were allowed to recover for 30 min prior to the addition of MBCD,
filipin, or ethanol (diluent control for filipin) as described above. At 0, 30, 60, 90,
120, and 180 min, samples of each suspension were collected and cell viability
was estimated by trypan blue exclusion (0.5 mg/ml). Cells and supernatants were
separated by centrifugation (500 � g, 5 min). Supernatants were removed and
placed on ice until used for the activity assay. The peptide substrate, benzyloxy-
carbonyl-L-arginyl-L-arginine-p-nitroaniline, was diluted from a stock solution
(10 mM in 90% dimethyl sulfoxide) to 0.1 mM in 0.1 M KH2PO4 and 2 mM
EDTA (pH 7.0 with KOH). A 1:200 ratio of sample to peptide was added to the
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wells of a 24-well plate and incubated for 10 min at 37°C. Accumulation of free
p-nitroaniline (yellow) was measured by using a �Quant plate reader (Bio-Tek
Instruments) at 405 nm. The results were reported as percentages of the maxi-
mum release.

Adhesion of E. histolytica to CHO cell monolayer. Entamoeba adhesion was
measured as described by Padilla-Vaca et al. (42). Briefly, CHO cells were plated
and grown to confluence in a 24-well culture plate. The CHO cells were fixed in
4% paraformaldehyde to prevent cytolysis, washed twice with PBS, incubated in
200 mM glycine, and washed twice more in PBS. Control or raft-disrupted (15
mM MBCD, 3.8 �M filipin, or diluent control [0.0475% ethanol]) Entamoeba (in
TYI-33) cells (104) were added to each well containing CHO cells and incubated
for 30 min at 37°C. At the end of the incubation, the wells were gently washed
twice with prewarmed medium to remove nonadherent trophozoites. The num-
ber of adherent Entamoeba cells from 90 fields of view were counted at a
magnification of �40 on an Olympus CK2 inverted microscope.

Purification of detergent-resistant membranes and sucrose density centrifu-
gation. Typically, 4 � 106 Entamoeba cells were centrifuged (500 � g for 5 min),
resuspended in ice cold buffer 1 with protease inhibitors (40 mM sodium pyro-
phosphate, 0.4 mM dithiothreitol, 0.1 mg of phenylmethylsulfonyl fluoride/ml, 2
mM EDTA, 1 mM EGTA, 3 mM sodium azide, 10 mM Tris-HCl [pH 7.6])
containing 0.5% Triton X-100 at 4°C for 30 min and then centrifuged (14,000 �

g for 5 min) at 4°C. The Triton-soluble supernatant (TSS) was removed, and the
Triton-insoluble pellet (TIP) was resuspended in 80% (wt/wt) sucrose in buffer
1. A noncontinuous sucrose gradient was generated by using equal volumes of 80
(containing the TIP), 50, 30, and 10% (wt/wt) sucrose solutions in buffer 1.
Samples were then centrifuged in a Beckman TL-100 ultracentrifuge (125,000 �

g for 16 h) at 4°C. After centrifugation, the gradient was fractionated into 20
equal volumes (140 �l/fraction). A sample was immediately removed from each
fraction, and the proteins were precipitated by the addition of trichloroacetic
acid as described elsewhere (72). The precipitated proteins were resuspended in
double-distilled H2O and mixed with 4� LDS buffer (Invitrogen, Carlsbad,
Calif.) and 2-mercaptoethanol (10% [vol/vol] final concentration). Samples were
stored at �20°C and used for sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and Western blot analysis as described below. The
remainder of the sample was used to quantify cholesterol, sucrose, and protein
levels from fractions as described below.

SDS-PAGE and Western blot analysis. SDS-PAGE and Western blot analyses
were performed as described previously by Welter et al. (71). Protein samples
from each fraction and the TSS were prepared as described above, loaded onto
the wells of a 4 to 12 or 12% polyacrylamide gel (Invitrogen), electrophoresed at
200 V for 1 h, and transferred to a polyvinylidene difluoride membrane (Invitro-
gen) in Towbin buffer (62) for 1 h at 100 V. Blotted membranes were decorated
with primary antibodies specific for the 170-kDa heavy subunit (polyclonal,
1:5,000 dilution), the 150-kDa intermediate subunit (polyclonal, 1:2,000 dilu-
tion), the 31- to 35-kDa light subunit (monoclonal, 1:4,000 dilution) (generous
gifts of W. Petri, University of Virginia, Charlottesville), the membrane-bound
cysteine protease EhCP5 (polyclonal, 1:1,333 dilution) (generous gift of Matthius
Leippe, Research Center for Infectious Disease, Würzburg, Germany) (9, 25), or
a commercially available pan-actin primary antibody (monoclonal, 1:800 dilu-
tion) (Novus Biologicals, Littleton, Colo.). Immunoblots were visualized by using
the appropriate peroxidase-conjugated secondary antibody (1:5,000 dilution for
goat anti-rabbit; 1:2,000 dilution for goat anti-mouse) (Cappel; ICN Pharmaceu-
ticals, Costa Mesa, Calif.) and the enhanced chemiluminescence Western blot-
ting detection system (Amersham Biosciences, Piscataway, N.J.) according to the
manufacturer’s instructions. Alternately, samples from each fraction were elec-
trophoresed and silver stained according to the manufacturer’s instructions
(Pierce).

Sucrose gradient fraction characterization. Each fraction from the sucrose
gradient was analyzed to determine the relative level of cholesterol and protein
and the percentage of sucrose. Cholesterol quantification was performed by
using the Amplex Red cholesterol assay kit (Molecular Probes) according to the
manufacturer’s instructions. Levels of cholesterol were reported as fluorescent
units (fl) of cholesterol per microgram of protein. Protein was measured by using
the bicinchoninic acid protein assay kit (Pierce) according to the manufacturer’s
instructions. Sucrose levels were determined by refractometry by using an
ADP220 polarimeter (Bellingham and Stanley, Inc., Lawrenceville, Ga.) accord-
ing to the manufacturer’s instructions.

Statistical analysis. Unpaired t tests were performed with the computer pro-
gram GraphPAD Instat (version 3.05; IBM). All values are represented as the
means of the results from at least three trials (� standard deviations [SD]).

RESULTS

The plasma membrane of E. histolytica contains both raft
and nonraft domains. To determine whether Entamoeba cells
possess highly ordered raft-like microdomains and to distin-
guish them from more-fluid-phase membrane regions, we
stained cells with either the order-preferring lipid analog
DiIC16 or the non-order-preferring lipid analog FAST-DiI
with or without chemical disruption of rafts (Fig. 1). Although
DiIC16 can diffuse into nonraft regions (56), it is commonly
used as a marker for raft-like membranes because of its ability
to partition into ordered domains due to its saturated acyl
chains (16-carbon chain with no double bonds) (11, 19, 40, 53,
60). On the other hand, FAST-DiI, which possesses unsatur-
ated fatty acyl chains (18-carbon chain with two double bonds),
resides exclusively in the fluid domain of the membrane (11,
40). These lipid analogs are appropriate for studies in this
system, as their fatty acid chain lengths and levels of saturation
are comparable to major components of the nascent fatty acids
found in Entamoeba cells (12). Both lipid analogs were local-
ized to the plasma membrane and some intracellular structures
in Entamoeba cells after 2 min of staining (Fig. 1B and D). The
similar staining pattern observed for the two dyes may be the
result of a uniform distribution of both domain types on the
plasma membrane. This is consistent with the notion that a
large proportion of the plasma membrane is in fact DRM-like
in nature (19, 40). Alternatively, this pattern may simply be the
result of association of both fluorophores with fluid domains
and/or the limitations in the resolution of light microscopy.
Several other studies have reported similar staining patterns
with comparable fluorescent lipid analogs (19, 20, 53). To test
this, cells were treated with a known raft-disrupting agent,
MBCD or filipin. MBCD has been widely used to remove
cholesterol selectively from the membranes of cells, thereby
disrupting membrane rafts. The concentration of MBCD uti-
lized was similar to that used elsewhere (19, 33, 44, 65). Filipin,
a cholesterol-sequestering agent, also disrupts membrane rafts
by coalescing cholesterol in the plasma membrane. Since lipid
microdomains are known to require cholesterol, depletion or
sequestration of cholesterol is commonly interpreted to result
in the disruption or destabilization of such domains (19).
Treatment with MBCD abolished staining in the plasma mem-
brane by DiIC16 (Fig. 1F). Alternately, treatment with filipin
resulted in alteration in the DiIC16 staining pattern such that
fluorescence was observed in a single region after treatment.
Both staining patterns are consistent with the proposed actions
of these agents (Fig. 1J). As expected, the raft-disrupting
agents did not affect FAST-DiI staining (Fig. 1H and L). To-
gether, these data authenticate the colocalization of DiIC16

with cholesterol-rich membrane regions and suggest the exis-
tence of raft-like domains in Entamoeba cells. The significant
reduction in visible staining of the plasma membrane with
DiIC16 after MBCD treatment suggests that the majority of
DiIC16 resided in raft-like microdomains. The increased inten-
sity of staining of intracellular structures observed in Fig. 1F
(compared to Fig. 1B) is due to the increased microscope laser
power utilized to ensure that plasma membrane staining was
absent. However, filipin was able to disrupt intracellular stain-
ing by DiIC16 (Fig. 1J), indicating that putative raft-like do-
mains may also be present on the intracellular structures. This
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is consistent with several previous reports that have demon-
strated the existence of raft-like domains on intracellular struc-
tures, such as the Golgi apparatus, and secretory vesicles in
other cells (36, 55).

Role of lipid microdomains in pinocytosis and secretion.
Raft-like microdomains are known to play an important role in
pinocytosis and secretion. We sought to determine whether
raft-like microdomains also play an important role in these
processes in the pathogen. To examine fluid-phase pinocytosis,
cells were pretreated with MBCD for 30 min and then exposed
to a fluid-phase marker, fluorescein isothiocyanate-conjugated
dextran. At 0 and 60 min, cells were collected and intracellular
fluorescence was determined as a measure of pinocytosis. It
was observed that pinocytosis was significantly inhibited in cells
treated with MBCD, suggesting that, in Entamoeba cells, this
process is dependent on the presence of cholesterol (Fig. 2).
Pinocytosis was not analyzed for cells pretreated with filipin, as
the diluent itself (ethanol) was found to inhibit fluid-phase
pinocytosis (data not shown).

The role of raft-like domains in the constitutive secretion of
cysteine proteases was also investigated with MBCD and fili-
pin. Cells were treated with these agents, and the release of
cysteine protease into conditioned medium was measured (Fig.

3). Neither cholesterol-binding agent significantly inhibited the
ability of the cells to secrete cysteine proteases, suggesting that
constitutive secretion of these proteases from Entamoeba cells
is not a raft-dependent cellular function. For both treated and

FIG. 1. Fluorescence microscopy of Entamoeba stained with the fluorescent lipid analogues DiIC16 (raft) and FAST-DiI (nonraft). Both stains
were detected in the plasma membrane in untreated control cells and in intracellular structures (B and D). Treatment of cells with the
cholesterol-depleting agent MBCD or the cholesterol-sequestering agent filipin resulted in an altered staining pattern for DiIC16 (F and J) but not
for FAST-DiI (H and L). Panels A, C, E, G, I, and K represent differential interference contrast (DIC) images. Scale bars, 20 �m.

FIG. 2. Effect of lipid microdomain disruption on fluid-phase pinocy-
tosis. Fluid-phase uptake was measured for cells that were not treated
(control) or that were treated with 7.5 mM MBCD. The uptake of fluid-
phase cells was significantly inhibited by treatment with MBCD. Means �
SD are shown (P � 0.05; n 	 6 for MBCD treatment).
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untreated cells, approximately 80% of cells remained viable
during the experiments, as determined by trypan blue exclu-
sion (data not shown). This suggests that any change in cellular
function observed after treatment was a result of the physio-
logical effects of cholesterol depletion from the plasma mem-
brane and not cell death.

Role of lipid microdomains in Entamoeba adhesion to epi-
thelial cells. A critical event in Entamoeba pathogenesis is
adhesion to host epithelial cells (15). In other systems, several
studies demonstrate that interactions between lipid microdo-
mains and adhesion complexes are necessary for proper at-
tachment and signal transduction (2, 18, 58). Therefore, we
examined the possible role of raft-like microdomains in the
adhesion of Entamoeba trophozoites to a mammalian cell
monolayer after raft disruption by MBCD and filipin. Adhe-
sion of Entamoeba trophozoites to CHO monolayers was sig-
nificantly inhibited by treatment with MBCD or filipin, sug-
gesting that intact microdomains are important to adhesion
(Fig. 4). Moreover, ethanol, the filipin diluent, had no effect on
adhesion, suggesting that the reduction in adhesion in the
presence of filipin was specific.

The inhibition of adhesion by treatment with raft-disrupting
agents suggests that Entamoeba adhesion molecules, such as
the Gal/GalNAc lectin, may localize to rafts. Therefore, we
isolated rafts by sucrose gradient flotation and examined the
enrichment of the subunits of the Gal/GalNAc lectin by West-
ern blot analysis. After extraction with cold Triton X-100, the
TIP of cell lysates was subjected to ultracentrifugation on su-
crose gradients; proteins associated with rafts float to the low-
density regions of the gradient, whereas soluble or cytoskele-
ton-associated proteins distribute to higher-density regions (5).
To characterize each of the fractions from the sucrose gradi-

ent, the relative amount of cholesterol, the percentage of su-
crose, and the quantity of protein were determined. Choles-
terol enrichment, a criterion used to identify lipid rafts, was
highest in fractions 9 and 10 of the sucrose gradient (Fig. 5B).
Upon analysis of the percentage of sucrose in each fraction, it
was determined that these same fractions contained approxi-
mately 35% sucrose, a region of the gradient that is consistent
with the known flotation properties of lipid rafts (16, 69).

Consistent with the proposed role of lipid rafts in adhesion,
Western blot analysis with antibodies specific to Hgl, Igl, or Lgl
demonstrated that a portion of these proteins localized to the
raft-like region of the gradient (fractions 9 to 10), suggesting
interaction with lipid microdomains (Fig. 5B). A proportion of
Hgl, Igl, and Lgl was also found in higher-density sucrose
fractions (fractions 15 to 19) and the pellet that formed at the
base of the gradient (fraction P). It has been suggested that
actin-associated proteins cannot float to low-density regions
because of their actin cytoskeletal anchorage. These proteins
typically float in high-density fractions (41, 53). To test whether
the presence of Hgl and Lgl in the high-density fraction may be
due to association with actin, we performed Western blot anal-
ysis on the gradient fractions by using a commercially available
pan-actin antibody that has been shown to specifically react
with actin from a variety of organisms including several mam-
mals, chickens, and the slime molds Physarum polycephalum
and D. discoideum. This antibody strongly recognized a protein
band of approximately 42 kDa in Entamoeba cell lysates con-
sistent with the known molecular mass of this protein (data not
shown). Decoration of the gradient fractions with this antibody

FIG. 3. Effect of lipid microdomain disruption on secretion of cys-
teine proteases. The release of cysteine proteases was measured for
cells that were not treated (white bars) and for cells treated with 7.5
mM MBCD (striped bars in bottom panel), 3.8 �M filipin (striped bars
in top panel), or ethanol (0.0475% vol/vol; diluent control for filipin)
(gray bars). The release of cysteine proteases was not inhibited by
treatment with agents that disrupt lipid rafts. Means � SD are shown
(n 	 4 for filipin and ethanol; n 	 3 for MBCD).

FIG. 4. Effect of disruption of lipid rafts on Entamoeba adhesion to
host cells. Adhesion to a CHO monolayer was measured for cells that
were not treated (control) and cells that were treated with 15 mM
MBCD, 3.8 �M filipin, or ethanol (0.0475% vol/vol; diluent control for
filipin). Adhesion was significantly inhibited by treatment with agents
that disrupt lipid rafts. Means � SD are shown (P � 0.05, n 	 3 for
filipin; P � 0.001, n 	 4 for MBCD).
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indicated that actin was indeed enriched in the higher-density
fractions. Given the evidence that the lectin interacts with actin
(15, 66), it is possible that the localization of the subunits in
these fractions may be due to cytoskeletal anchorage. Given
the covalent association of Hgl and Lgl, it is not surprising that
these two subunits exhibit a similar distribution in the gradient.

The pellet (fraction P) may represent incompletely solubi-
lized lysates which may harbor unbroken cells and/or unbroken
intracellular transport vesicles. Indeed, this would explain the
presence of Hgl, Igl, Lgl, and actin in this fraction. Alterna-
tively, the pellet may represent very large and stable protein
complexes that include the lectin. Given the proposed role of
the lectin in signaling (14, 68), it would not be surprising to find
this adhesion molecule interacting with a variety of proteins
(see Discussion). Further experimentation is necessary to dis-
tinguish between these possibilities. The lack of Igl staining in
high-density, actin-rich fractions may indicate that Igl associa-
tion with actin is weaker than that of the Hgl-Lgl heterodimer
and/or that the subunit is excluded from some of the protein
complexes containing Hgl and Lgl. The latter may have impor-
tant regulatory consequences.

Finally, a membrane protein not involved in adhesion,

EhCP5, was determined to localize partially to the TIP (frac-
tion P) but did not float in the gradient. These results support
the specificity of the flotation observed for the lectin. In all
cases, the proteins described above were also observed in the
TSS fraction, suggesting the ability of these proteins to move
between these two membrane domains. A silver stain of the
sucrose gradient fractions and TSS revealed a marked increase
in protein staining beginning at 
31% sucrose (fraction 8)
over less-dense fractions, and differential protein band pat-
terns can be observed among the fractions (Fig. 5A).

DISCUSSION

In this study, we have identified raft-like microdomains in
the plasma membrane of E. histolytica by staining with two
different fluorescent lipid analogs, FAST-DiI and DiIC16. We
have also shown that pinocytosis and adhesion to host cell
monolayers are raft-dependent cellular events in this patho-
gen. Interestingly, constitutive secretion of cysteine proteases
was not inhibited by raft disruption. Finally, we determined
that the heavy, intermediate, and light subunits of the Gal/
GalNAc adherence lectin partially purify with the detergent-

FIG. 5. Silver stain and Western blot analysis of a fractioned sucrose gradient (fractions 1 through 4 combined [1/4] to 19 and P) and the TSS.
(A) A silver-stained SDS-PAGE gel of sucrose gradient fractions (fractions 1/4 to 19 and P) and the TSS. (B) Western blots of a sucrose
gradient-fractionated TIP and TSS membrane fractions with antibodies to the heavy (Hgl), intermediate (Igl), and light (Lgl) subunits of the
Gal/GalNAc lectin as well as a blot for actin and a membrane-bound protein not involved in adhesion, EhCP5. The percent sucrose (wt/wt) and
amount of cholesterol (relative fluorescence [fl]/milligram of protein) for each fraction or fraction combination are given below the blot. Hgl, Igl,
and Lgl are enriched in the low-density, cholesterol-rich region of the gradient (fractions 9 and 10) as well as in medium- and high-density sucrose
fractions (fractions 11 to 19). Actin is enriched in the high-density region of the sucrose gradient (fractions 15 to 19). The membrane-bound protein
EhCP5, which is not involved in adhesion, is found exclusively in the pellet-containing fraction P and the TSS. N/A, not defined.
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insoluble portion of the membrane and are enriched in cho-
lesterol-containing regions of the membrane.

In other systems, it is established that cholesterol-rich mem-
brane domains play a role in endocytosis. Reduction of cho-
lesterol by inhibiting its synthesis with oxygenated cholesterol
derivatives was shown to decrease pinocytic rates in L cells (23,
24). More recently, the uptake of an apoptotic agent alkyl-
lysophospholipid or the transferrin receptor was blocked by
treatment with MBCD or filipin (63). In another example,
depletion of cholesterol was coupled with an increased resi-
dency of clathrin in the plasma membrane and a decrease in
the proportion of deeply invaginated clathrin-coated pits, sug-
gesting that raft-like domains participate in the early formation
of endocytic vesicles (59). While clathrin has been identified in
Entamoeba cells (61), its role in endocytosis in this organism
has not been established. Here, we demonstrate the impor-
tance of intact raft-like domains to fluid-phase pinocytosis in
Entamoeba cells, suggesting that molecular mechanisms, sim-
ilar to those in higher eukaryotes, may govern this process in
this pathogen.

Secretion is a vital component to the virulence of Entamoeba
cells, as several released toxic molecules, such as cysteine pro-
teases and the pore-forming peptide amoebapore, participate
in the destruction of the colonic epithelium, gut-resident bac-
teria, and erythrocytes. Lipid rafts have been implicated in the
secretory capabilities of several cell lines. For example, the
neuroendocrine tumor cell line, AtT-20, was defective in the
formation of both constitutive and regulated secretory vesicles
from the trans-Golgi network upon cholesterol depletion (70).
Notably, after cholesterol depletion of rat pancreatic cells,
amylase was secreted constitutively rather than in a regulated
fashion (50). These results suggest that, at least for rat pan-
creatic cells, regulated secretory events are lipid raft depen-
dent, whereas constitutive secretion is lipid raft independent.
Similarly, the release of cysteine protease from Entamoeba
cells, which is a constitutive secretory event (32), was not af-
fected by the disruption of raft-like domains. However, we
cannot rule out the possibility that regulated secretory events,
such as the release of the amoebapore, are sensitive to raft
disruption in Entamoeba cells.

Amoebic infection is dependent on the ability of the tropho-
zoite to adhere to the colonic epithelium. Here, adhesion of
Entamoeba cells to a CHO monolayer was blocked upon treat-
ment with raft-disrupting agents MBCD and filipin (Fig. 4).
Our results are consistent with those of other reports that have
described the necessity of microdomains for cell-cell adhesion.
In D. discoideum, cell-cell adhesion was also shown to be sen-
sitive to raft-disrupting agents, such as filipin or digitonin (21).
Furthermore, the Dictyostelium cell adhesion molecule gp80
was isolated in the low-density, raft-like fractions of a sucrose
gradient (21, 22).

Adhesion complexes in higher eukaryotes have also been
shown to be raft associated. In RBL-2H3 mast cells, the im-
munoglobulin E receptor, FcεRI, was evenly distributed in the
plasma membrane but was observed to colocalize with the lipid
raft marker, fluorescent cholera toxin B subunit, upon ligand
binding (reviewed in reference 28). Connexin 43, an adhesion
molecule important in gap junctions, has been determined to
reside in raft-like microdomains at the junctional membrane
regions of NIH 3T3 fibroblasts and human embryonic kidney

293T cells (51). In leukocytes, lipid rafts are critical in adhesion
as well as in the cellular response to a presented antigen (30,
33). For example, binding of the T-cell receptor to antigen
initiates its association with a number of proteins, including
cytoplasmic protein tyrosine kinases, membrane-associated
Src-family kinases, and several receptor-associated proteins in
raft-like microdomains (27). Once this activation and signaling
machinery assembles in the raft, downstream signaling events
mediated by the small GTPase, Rap1A, focal adhesion kinase,
proline-rich tyrosine kinase-2, and mitogen-activated protein
kinase and actin reorganization occur (27, 38, 48, 52). Disrup-
tion of microdomains in these cells results in an inability to
propagate this antigen-dependent signal (27).

The precise molecular mechanism by which Entamoeba ad-
heres to mammalian cells has not been discerned. However, it
is known that the Gal/GalNAc-inhibitible lectin is necessary
for both adhesion to host cells and virulence (14, 31, 42, 45,
49). To date, the heavy and light subunits have always been
detected jointly in amoebae or by Western blots of native
proteins (35). Likewise, in this study, the heavy and light sub-
units exhibit similar distribution in the sucrose gradient. Stud-
ies in which the heavy subunit was mutagenized identified �2
and �7 integrin-like sequences in the cytoplasmic tail of the
heavy subunit (68). Interestingly, the integrin family of adhe-
sion proteins, which consists of allosteric signaling molecules
that mediate intracellular (inside out) or extracellular (outside
in) signals, are often associated with raft-like microdomains
and with the cytoskeleton through several actin-binding pro-
teins (29, 30). The results of this study, which demonstrate the
enrichment of the Gal/GalNAc lectin heavy subunit in both the
cholesterol- and actin-rich domains supports the notion (68)
that this adhesion molecule may be functionally similar to
integrins.

Several reports demonstrate a direct interaction between
lipid rafts and the actin cytoskeleton, which may account for
the dual localization of the Gal/GalNAc heavy (and conse-
quently, light) subunit. First, upon cholesterol depletion of
hippocampal cells with MBCD, dendritic spines, typical mem-
brane outgrowths of this cell type, were observed to immedi-
ately collapse due to F-actin redistribution from the spines to
dendritic shafts (26). Second, actin depolymerization was ob-
served in microvilli and lamellipodia of fibroblasts upon cho-
lesterol depletion (39). Third, proteomic analysis of the deter-
gent-resistant membrane from neutrophils revealed the
association of an F-actin-binding protein, supervillin (41). In-
terestingly, the �2-integrin, LFA-1, is excluded from microdo-
mains in unstimulated T cells due to cytoskeletal constraints.
Upon activation, the protein moves into the more-ordered
domain to presumably mediate a signal either from internal or
external sources (33). Although it is not clear why the subunits
of Entamoeba Gal/GalNAc lectin partition into both raft-like
sucrose gradient fractions and actin-rich fractions of higher
density, the data support the previously reported notion that
mechanisms similar to those for LFA-1 may regulate the Gal/
GalNAc lectin (68). In other words, the Gal/GalNAc het-
erodimer (which consists of Hgl and Lgl) may be excluded
from microdomains through its interaction with the actin cy-
toskeleton. Upon binding to Gal- or GalNAc-containing li-
gands, the proteins may be released from the cytoskeleton and
become incorporated into raft-like regions of the membrane.
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This may initiate a signaling cascade that would trigger viru-
lence functions, including the release of the pore-forming pep-
tide amoebapore.

Hgl and Lgl were also found in the pellet that formed at the
bottom of the gradient. The pellet (fraction P) may represent
incompletely solubilized low-density fractions or large, stable
protein complexes that include the lectin. Given the proposed
role of the lectin in signaling (68), it would not be surprising to
find this adhesion molecule forming complexes with other pro-
teins. In support of this, it has been shown that integrins form
large complexes with transmembrane 4 superfamily proteins
that are �20 million Da and remain intact after treatment with
Triton (10).

The precise function and role of Igl in adhesion and viru-
lence has not been described; however, it is known that amoe-
bic adhesion to CHO cells is blocked upon incubation of En-
tamoeba with a monoclonal antibody to the protein (8).
Previously, Igl was shown to have a GPI anchor sequence motif
on its carboxy terminus, Gal/GalNAc binding affinity indepen-
dent of that of Hgl, and a noncovalent association with the
Hgl/Lgl heterodimer, and it has recently been postulated to
function as a coreceptor for the heterodimer (35, 43). Our
work demonstrates that Igl is associated with lipid raft frac-
tions and actin-rich fractions; however, unlike Hgl and Lgl, it is
not found in the densest fractions of the sucrose gradient. This
indicates that Igl does not associate with actin as strongly as the
Hgl/Lgl heterodimer and/or may not be included in some of
the protein complexes containing the other two subunits. In
the second scenario, Igl may serve as a regulator for adhesion
and/or downstream signaling events associated with virulence.

This analysis is the first to describe raft-like lipid microdo-
mains in Entamoeba cells and to illustrate their potential phys-
iological significance for this human intestinal parasite. Lipi-
domic and proteomic analyses of the detergent-insoluble
regions of the Entamoeba plasma membrane, currently under
way, will greatly advance the knowledge of host-pathogen in-
teractions. These future studies will provide greater insight
into the role of lipid rafts and the mechanisms governing the
virulence of this human pathogen.
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