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Amphotericin B (AmB) is a ligand of toll-like receptor 2 (TLR2). Here, we demonstrate the participation of
TLR1 in AmB-induced cell activation that led to the secretion of tumor necrosis factor alpha, interleukin 6
(IL-6), and IL-8. Hence, TLR2-TLR1 coactivation serves as the underlying mechanism for the proinflammatory
toxicities associated with AmB.

The proinflammatory response to amphotericin B (AmB) is
mediated by a toll-like receptor (TLR)-dependent mechanism.
Recently, Sau et al. reported that primary murine macro-
phages and human cell lines expressing TLR2, CD14, and
MyDS88 responded to AmB stimulation with nuclear factor
kB-dependent activity and cytokine secretion, whereas cells
deficient in these proteins did not respond (12). Here, we
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expand these observations by demonstrating the critical par-
ticipation of TLR1 in AmB-induced cell activation.
AmB-induced cellular activation is TLR2 dependent. In a
series of experiments, we confirmed the TLR2-dependent
nature of AmB-induced cell activation. The THP1 cell line
(ATCC no. TIB-202; cell density, 10°/ml), which expresses
abundant TLR2 mRNA (as assessed by reverse transcription-
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FIG. 1. Dose-dependent secretion of cytokines by THP1 monocytic cells during exposure to amphotericin B. Amphotericin B deoxycholate
induced human monocytic cells to secrete, in a concentration-dependent manner, interleukin (IL)-1B, IL-6, IL-8, and tumor-necrosis factor alpha.
IL-8 was secreted at the highest absolute concentration, while lower but significant (compared to results with unstimulated cells) levels of IL-1p,
IL-6, and TNF-a were observed. The highest level of secretion was observed at a stimulation dose of 6.25 pM.
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FIG. 2. Cellular activation of various cell lines by amphotericin B
formulations and other stimuli. A, Amphotericin B deoxycholate
(AmBD) induced cellular activation, as indicated by a concentration-
dependent increase in nuclear factor kB activity in HEK293-TLR2
cells but not in wild type (HEK293-wt) and TLRY-transfected HEK293
(HEK293-TLRY) cells. B, HEK293-wt responds to stimulation with
TNF-a but not to PGN (a TLR2 ligand), unmethylated CpG (a TLR9
ligand), and LPS (a TLR4 ligand). Upon transfection with TLR2,
HEK293-TLR2 acquired responsiveness to PGN but not to LPS and
CpG. On the other hand, HEK293-TLR9 acquired responsiveness to
CpG but not to PGN and LPS. C-E, AmBD induces a dose-dependent
secretion of TNF-q«, IL-6, and IL-8 in HEK293-TLR2 cells. HEK293-
TLR2 cells did not secrete or secreted markedly lower levels of TNF-a
(C), IL-6 (D), and IL-8 (E) during stimulation with the lipid formu-
lations of AmB: ABLC and LAmB.

PCR), secreted interleukin 18 (IL-1B), IL-6, IL-8, and tumor
necrosis factor alpha (TNF-a) (assessed by Fluorokine multi-
analyte profiling; R&D Systems, Minneapolis, Minn.) during
an 18-h incubation (at 37°C, 5% CO,) with AmB deoxycholate
(Fungizone Intravenous; Bristol Myers Squibb, Princeton,
N.J.) (Fig. 1); IL-2, IL-4, IL-10, IL-12(p70), granulocyte colo-
ny-stimulating factor, and granulocyte-macrophage colony-
stimulating factor were not secreted. At concentrations that
approximate the systemic exposure during AmB infusion at
doses of 0.4 to 0.6 mg/kg of body weight, IL-13 was 10- to 43-
fold higher, IL-6 was >580-fold higher, IL-8 was 7- to 21-fold
higher, and TNF-a was 4- to 22-fold higher than levels in un-
stimulated cells (P < 0.05 for all comparisons).

In contrast, the human embryonic kidney (HEK) 293 wild-
type (wt) cell line (HEK293-wt) (ATCC no. CRL-1573; cell
density, 10%/ml), which is deficient in TLR2 mRNA expression
(by reverse transcription-PCR), failed to respond to AmB dur-
ing an 18-h incubation (37°C, 5% CO,) (Fig. 2A). Likewise,
HEK?293-wt did not respond to the TLR?2 ligand peptidoglycan
(PGN) (10 pg/ml; Sigma) (Fig. 2B). However, when HEK293-
wt was manipulated to express TLR2 (HEK293-TLR2), the
cells acquired responsiveness to AmB, as indicated by the
dose-dependent nuclear factor kB activity and IL-6, IL-8, and
TNF-a secretion (Fig. 2); IL-2, IL-4, IL-10, IL-12(p70), gamma
interferon, granulocyte colony-stimulating factor, and granulo-
cyte-macrophage colony-stimulating factor were not secreted
above baseline levels. HEK293-TLR2 also acquired respon-
siveness to PGN but remained nonresponsive to the TLR4
ligand lipopolysaccharide (LPS) (Sigma) and the TLR9 ligand
CpG (Fig. 2B).
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FIG. 3. Neutralization-inhibition experiments using murine anti-human TLR1 and TLR2 monoclonal antibodies demonstrate the critical role
that the TLR2-TLR1 complex plays in cellular activation by AmB. AmB-induced secretion of TNF-a (A), IL-6 (B), and IL-8 (C) by THP1 cells
is inhibited by preincubation with anti-TLR2 monoclonal antibody, compared to results with cells preincubated with an MAD isotype control.
Likewise, cytokine secretion in response to the TLR2 ligands PGN and Pam-3-Cys was inhibited by anti-TLR2 MAD (D). Preincubation of THP1
cells with murine anti-human TLR1 MAb inhibited TNF-a and IL-6 (E) and IL-8 (F) secretion in response to AmB. Anti-TLR1 MAb also
inhibited IL-8 secretion in response to the TLR2-TLR1 ligand Pam-3-Cys but not to PGN and TNF-a (F).

Moreover, preincubation of THP1 with murine anti-human
TLR2 monoclonal antibody (MADb) (eBioscience) significantly
reduced IL-6, IL-8 and TNF-a secretion in response to AmB
(Fig. 3A to C). As expected, anti-TLR2 MAD also reduced
cytokine secretion in response to PGN and tripalmitoyl cystein-
yl lipopeptide (Pam-3-Cys) but not to TNF-a (10 ng/ml;
R&D). Taken together, these series of studies, which utilized a
modified “lack — gain — loss of function” experimental de-
sign, confirm the TLR2-dependent nature of AmB-induced
cellular activation.

AmB-induced cellular activation is TLR1 dependent. Since
TLR2-mediated signaling is facilitated by other TLRs (7, 11,
13), we determined whether TLR1 participates in AmB-in-
duced cellular activation. Preincubation of THP1 with murine
anti-human TLR1 MAb (eBioscience) reduced IL-6, IL-8, and
TNF-a secretion in response to AmB (Fig. 3E to F). Anti-
TLR1 MAD also inhibited IL-8 secretion in response to the

TLR2-TLR1 ligand Pam-3-Cys (10-ng/ml; Calbiochem) but
not the TLR-independent TNF-a (Fig. 3F).

Notably, the inhibition of IL-6, IL-8, and TNF-a secretion
during preincubation with anti-TLR1 MAb was observed even
without specific inhibition of the TLR2 molecule. Indeed, IL-8
inhibition with anti-TLR1 MADb was comparably greater than
that with anti-TLR2 MAb (P = 0.098), and the addition of
anti-TLR1 MAD significantly increased the degree of IL-8 in-
hibition by anti-TLR2 MAb (P = 0.0201). All these data sug-
gest that TLR1 participation is essential in TLR2-mediated
AmB-induced cell activation (12).

AmB-induced cellular activation is not TLR9 dependent.
In contrast, TLR9 does not participate in AmB-induced cel-
lular activation. HEK293-wt manipulated to express TLR9
(HEK293-TLR9Y) (cell density, 10°%ml) remained nonrespon-
sive to AmB and PGN, while it gained responsiveness to CpG
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2006S (2 uM; Integrated DNA Technologies, Coralville, Iowa)
(Fig. 2A and B).

Our collective observations and those by Sau et al. (12)
suggest that AmB is recognized as a pathogen-associated mo-
lecular pattern by TLR2 and that the ensuing TLR2-AmB
interaction results in the costimulation of TLR1, the cooper-
ation of TLR2-TLR1 signaling pathways, the activation of nu-
clear factor kB, and the secretion of proinflammatory cyto-
kines and chemokines. Interestingly, Sau et al. suggested a
possible role of TLR4, since macrophages from TLR4 mutant
mice were less responsive to high-dose AmB than macro-
phages expressing normal TLR4 (12). However, during stim-
ulation with conventional doses of AmB, TLR4 mutant mac-
rophages were as responsive as the cells with normal TLR4.
Moreover, TLR4 transfection of HEK293 did not render re-
sponsiveness to AmB. These observations suggest that TLR4 is
not the critical pattern recognition receptor that mediates
AmB-induced cellular activation. Indeed, Sau et al. suggested
that TLR4 may play a role in only some systems (12). Instead,
TLR2 and TLRI1 appear to be the dominant receptors for
AmB-induced cell activation. Our multiple attempts to assess
the role of other TLRs, such as TLR6, which comediates the
TLR2-mediated response to PGN, were limited by the lack of
reliable anti-human TLR6 MAb.

The TLR2-TLR1 coactivation could serve as the molecular
basis for the infusion-related fever and rigors that occur in up
to 70% of patients receiving intravenous AmB (1, 3, 10). Cur-
rently, the use of lipid-based AmB has reduced the systemic
inflammatory toxicity associated with AmB (14). Sau et al.
demonstrated that lipid-based AmB did not induce nuclear
factor kB activation or significant cytokine secretion (12).
Here, we report that cellular activation was still induced by
lipid-based AmB (particularly AmB lipid complex [ABLC]),
albeit at significantly much lower levels.

Lipid-based AmB induced varying degrees of cellular acti-
vation. Nuclear factor kB activation in HEK293-TLR2 cells
was significantly lower during exposure to ABLC (The Lipo-
some Company, Princeton, N.J.) and liposomal AmB (LAmB)
(AmBisome; Fujisawa Healthcare, Deerfield, Ill.) than with
AmBD, although the degree of activation was also significantly
higher than that in unstimulated cells. Importantly, there was a
contrast in cellular activation by the lipid-based formulations—
nuclear factor kB activation (Fig. 4A) (P = 0.05) and TNF-«
(Fig. 4C) (P = 0.05) and IL-8 (Fig. 4B) (P = 0.05) secretion
were significantly higher in ABLC-stimulated than in LAmB-
stimulated HEK293-TLR2 cells. However, the levels of TNF-a
and IL-8 were very low, and these were abrogated by anti-
TLR2 or -TLR1 MADb (data not shown).

The intercalation of AmB into lipid carriers could have
provided hindrance that limited TLR2-AmB interaction. Lipid
complexation stabilizes AmB in a self-associated state so that
it is unavailable for interaction with cell membranes (4, 6, 8).
Nonetheless, ABLC was still able to induce cell activation, at a
level that is significantly higher than that with LAmB. The
physicochemical characteristics of lipid carriers and the pro-
cess by which AmB is incorporated into lipid vehicles could
account for these contrasting biologic properties (5), which
could be correlated clinically to the higher incidence of infu-
sion-related reactions with ABLC than with LAmB (2, 9).

In conclusion, AmB promotes inflammation through a
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FIG. 4. Differential degree of cell activation in response to am-
photericin B deoxycholate (AmBD), amphotericin B lipid complex
(ABLC), and amphotericin B liposome (LAmB). The degrees of nu-
clear factor kB activation in HEK293-TLR2 cells in response to the
two lipid formulations are significantly lower than that with AmBD but
are significantly higher than that in unstimulated cells (UC, panel A).
ABLC induced a significantly higher degree of nuclear factor kB ac-
tivation (A) and TNF-« (B) and IL-8 (C) secretion in HEK293-TLR2
cells than did LAmB. Deoxycholate (DOC) did not induce nuclear
factor kB activation in HEK293-TLR2 cells (A).

TLR2-TLR1-dependent mechanism. This ability of AmB to
activate TLRs may relate to the fact that it is a fermentation
product of Streptomyces nodosus (15). The role of TLRs in the
pathogenesis of adverse inflammatory toxicities to other drug
therapies deserves study.
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